
S4PM 5.18.0 Installation and
Configuration Guide

A guide to installing and configuring NASA’s open source

Simple, Scalable, Script-Based, Science Processor for
Measurements (S4PM)

January 2007

Document Version 1.0.0

Stephen W. Berrick, NASA

S4PM 5.18.0 Installation and Configuration Guide: Table of Contents

1/26/2007 2

Table of Contents

TABLE OF CONTENTS 2

1. INTRODUCTION 7

1.1 GOALS OF S4PM 7
1.2 FUTURE DIRECTIONS 8
1.3 CHANGES IN S4PM 5.18.0 8

2. RELATED DOCUMENTATION 10

3. INSTALLING S4PM 11

3.1 INSTALLATION REQUIREMENTS 11
3.2 BASIC INSTALLATION 11
3.3 CUSTOMIZED INSTALLATION 12
3.3.1 CUSTOMIZED INSTALLATION EXAMPLE 13
3.4 OPTIONAL TEST PACKAGE INSTALLATION 14
3.5 OPTIONAL DME INSTALLATION 15

4. STRINGMAKER OVERVIEW 16

4.1 WHY STRINGMAKER? 16
4.2 PREPARATION FOR STRINGMAKER 17
4.3 STRINGMAKER CONFIGURATION FILES 17
4.3.1 THE STRINGMAKER GLOBAL CONFIGURATION FILE 18
4.3.2 THE STRINGMAKER HOST CONFIGURATION FILE 18
4.3.3 THE STRINGMAKER DATA TYPES CONFIGURATION FILE 18
4.3.4 THE STRINGMAKER STATIC CONFIGURATION FILE 18
4.3.5 THE STRINGMAKER STRING CONFIGURATION FILE 18
4.3.6 THE STRINGMAKER ALGORITHM CONFIGURATION FILES 19
4.3.7 THE STRINGMAKER JOBS CONFIGURATION FILE 19
4.3.8 THE STRINGMAKER DERIVED CONFIGURATION FILE 19
4.3.9 CONFIGURATION FILE SUMMARY 20
4.3.10 RUNNING STRINGMAKER 20
4.3.11 USING THE S4PM MONITOR TO INSTALL AN ALGORITHM 22
4.4 S4PM STRING DIRECTORY STRUCTURES 23
4.4.1 BASIC S4PM DIRECTORY STRUCTURE 23
4.4.2 MULTIPLE INSTANCE S4PM DIRECTORY STRUCTURE 24
4.4.3 S4PM DIRECTORY STRUCTURE WITH SEPARATE INGEST ROOT 25
4.4.4 S4PM DIRECTORY STRUCTURE WITH SEPARATE INGEST AND DATA ROOT 26
4.4.5 S4PM STRUCTURE WITH GLOBAL ROOT 27
4.5 SIMPLE NON-ECS S4PM DEPLOYMENTS 28
4.6 SIMPLE ECS S4PM DEPLOYMENTS 29

S4PM 5.18.0 Installation and Configuration Guide: Table of Contents

1/26/2007 3

5. THE STRINGMAKER GLOBAL CONFIGURATION FILE 30

5.1 FILE NAME 30
5.2 $USER 30
5.3 $S4PM_EMAIL 30
5.4 $GLOBAL_ROOT 31
5.5 $STRINGMAKER_ROOT 31
5.6 %RUN_ENV_VARIABLES 32
5.7 $DATASERVER_UR 32
5.8 @PRIVILEGED_USERS 32
5.9 OTHER PARAMETERS 34
5.10 SAMPLE STRINGMAKER GLOBAL CONFIGURATION FILE 35

6. THE STRINGMAKER HOST CONFIGURATION FILE 36

6.1 FILE NAME 36
6.2 $DOMAIN 36
6.3 $HOST 37
6.4 $HOST_ALIAS 37
6.5 $BINDIR 37
6.6 $CFGDIR 38
6.7 $S4PM_ROOT 38
6.8 $INGEST_ROOT 38
6.9 $DATA_ROOT 39
6.10 $PAN_DIR 39
6.11 $PDR_DIR 39
6.12 $ECS_ROOT 40
6.13 $TOOLKIT_ROOT 40
6.14 $LOCAL_S4PA_FTP_ROOT 41
6.15 SAMPLE STRINGMAKER HOST CONFIGURATION FILE 41

7. THE STRINGMAKER DATA TYPES CONFIGURATION FILE 42

7.1 FILE NAME 42
7.2 %ALL_DATATYPE_MAX_SIZES 42
7.3 %ALL_DATATYPE_VERSIONS 43
7.4 %RAGGED_FILE_TRAP 43
7.5 %REGISTER_DATA_OFFSETS 44
7.6 @ALL_QC_DATATYPES 44
7.7 %QC_OUTPUT 45
7.8 %NON_HDF_DATATYPES 46
7.9 %SKIP_CHECKSUM_DATATYPES 46
7.10 %DATA_FILE_QA 47
7.11 $S4PM_FILENAME_PATTERN 47
7.11.1 FILE NAME PATTERN RESTRICTIONS 48
7.11.2 PERFORMANCE IMPACTS 49
7.11.3 DEFAULT FILE NAME PATTERN 49
7.12 %BROWSE_MAP 49
7.13 %S4PA_DATA_MAP 50

S4PM 5.18.0 Installation and Configuration Guide: Table of Contents

1/26/2007 4

); 52
7.14 SAMPLE STRINGMAKER DATA TYPES CONFIGURATION FILE 52

8. THE STRINGMAKER STATIC CONFIGURATION FILE 53

8.1 FILE NAME 53
8.2 %STATIONS 53
8.2.1 $CFG_STATION_NAME 54
8.2.2 $CFG_DISABLE 54
8.2.3 EXEC_SYMLINKS 54
8.2.4 MISC_SYMLINKS 54
8.2.5 $CFG_MAX_CHILDREN 55
8.2.6 %CFG_COMMANDS 55
8.2.7 %CFG_DOWNSTREAM 55
8.2.8 %CFG_INTERFACES 55
8.2.9 %CFG_FAILURE_HANDLERS 56
8.2.10 %CFG_MANUAL_OVERRIDES 56

9. THE STRINGMAKER STRING CONFIGURATION FILE 57

9.1 FILE NAME 58
9.2 $STRING_ID 58
9.3 $DATA_SOURCE 58
9.4 $DATA_SOURCE_LONGNAME 58
9.5 $INSTANCE 59
9.6 $ALGORITHM_ROOT 59
9.7 @RUN_SORTED_ALGORITHMS 60
9.8 @DISPLAY_SORTED_ALGORITHMS 60
9.9 %ALGORITHM_VERSIONS 60
9.10 %ALGORITHM_PROFILES 61
9.11 %POOL_CAPACITY 61
9.12
 $CONFIG_FILES{'REPEAT_DAILY/S4PM_DELETE_EXPIRED_DATA.CFG'}{'%AGELIMITS
'} 62
9.13 $DATA_EXPIRATION_MAX_HOURS 63
9.14 $STATIONS{$STATION_NAME}{'$CFG_MAX_JOBTIME'} 63
9.15 %PROXY_ESDTS 64
9.16 $SMART_POLLING, @SMART_POLLING_INTERVALS, @SMART_POLLING_FREQS 64
9.17 $HAS_QC 66
9.18 $EXPORT_PH 66
9.19 $USE_CHECKSUM 67
9.20 $HAS_AUTO_REQUEST 67
9.21 $ON_DEMAND 67
9.22 $DME, $SUB_REQUEST_EMAIL, $PICKUP_DIR 68
9.23 $DATA_SOURCE_POLLING, $DATA_SOURCE_POLLING_DIR 68
9.24 @DATAPOOL_INSERT_DATATYPES, $DATAPOOL_STAGING_DIR 69
9.25 $INPUT_SYMLINK_ROOT, $INPUT_SYMLINK_EXPIRATION_FILE 69
9.26 $SCLI_HOST 70
9.27 %ORDERING_TOOL_PARMS 70

S4PM 5.18.0 Installation and Configuration Guide: Table of Contents

1/26/2007 5

9.28 $SMART_ALLOCATION 71
9.29 $EXTERNAL_ARCHIVE_SYSTEM 71
9.30 $USE_DATAHANDLES 72
9.31 %PDR_POLLING_PARMS 73
9.32 %COMMANDS_ADDENDA 73
9.33 PARAMETER OVERRIDES 74
9.34 SAMPLE STRINGMAKER STRING CONFIGURATION FILE 74

10. THE STRINGMAKER ALGORITHM CONFIGURATION FILE 75

10.1 FILE NAME 75
10.2 MANDATORY PARAMETERS 76
10.2.1 $ALGORITHM_NAME 76
10.2.2 $ALGORITHM_VERSION 76
10.2.3 $ALGORITHM_EXEC 76
10.2.4 $PROCESSING_PERIOD 77
10.2.5 $PRODUCT_COVERAGE 78
10.2.6 $METADATA_FROM_METFILE 78
10.2.7 $TRIGGER_COVERAGE 79
10.2.8 $PCF_PATH 79
10.2.9 @STATS_DATATYPES 79
10.2.10 $STATS_INDEX_DATATYPE 80
10.2.11 %INPUTS, %OUTPUTS 80
10.2.12 %INPUT_USES 85
10.3 OPTIONAL PARAMETERS 86
10.3.1 $POST_PROCESSING_OFFSET, $PRE_PROCESSING_OFFSET 86
10.3.2 $PROCESSING_START 87
10.3.3 $MAKE_PH 87
10.3.4 $APPLY_LEAPSEC_CORRECTION 87
10.3.5 $LEAPSEC_DATATYPES 88
10.3.6 $ALGORITHM_STATION 88
10.3.7 %SPECIALIZED_CRITERIA 89
10.3.8 THE FILE ACCUMULATION PRODUCTION RULE 90
10.3.9 THE PRODUCTION SUMMARY FILE 91
10.3.10 $PRESELECT_DATA_ARGS 93
10.3.11 $TRIGGER_BLOCK_ARGS 93
10.3.12 SPATIAL IDENTIFIERS 94
10.3.13 SAMPLE STRINGMAKER ALGORITHM CONFIGURATION FILE 98

11. THE STRINGMAKER JOBS CONFIGURATION FILE 99

11.1 FILE NAME 99
11.2 %MAX_CHILDREN 99

12. THE STRINGMAKER DERIVED CONFIGURATION FILE 101

12.1 FILE NAME 101

S4PM 5.18.0 Installation and Configuration Guide: Table of Contents

1/26/2007 6

13. WORKING WITH ALGORITHMS 102

13.1 WHAT ALGORITHMS CAN S4PM SUPPORT? 102
13.2 ALGORITHM PRODUCTION RULES 102
13.3 PRODUCTION RULE CONCEPTS 103
13.3.1 SIMPLE PRODUCTION SCENARIOS 103
13.3.2 THE STRINGMAKER ALGORITHM CONFIGURATION FILE 104
13.3.3 ALGORITHM CONFIGURATION FILE AUTOPSY 105
13.4 PROCESS CONTROL FILES 108
13.4.1 THE PROCESS CONTROL FILE 108
13.4.2 THE PROCESS CONTROL FILE TEMPLATE 109
13.5 MULTI-FILE GRANULE OUTPUT 110
13.5.1 WHAT ARE MULTI-FILE GRANULES? 110
13.5.2 MULTI-FILE GRANULE SUPPORT IN S4PM 111
13.5.3 FULL MULTI-FILE GRANULE SUPPORT 111
13.5.4 A CAVEAT 111
13.6 PREPARING AN ALGORITHM PACKAGE FOR S4PM 112
13.7 INSTALLING ALGORITHM PACKAGES 113
13.7.1 INSTALLATION 113
13.7.2 CONFIGURING S4PM FOR AN ALGORITHM 114

APPENDIX A. SAMPLE STRINGMAKER ALGORITHM CONFIGURATION FILE 115

APPENDIX B. SAMPLE PROCESS CONTROL FILE 118

S4PM 5.18.0 Installation and Configuration Guide: 1. Introduction

1/26/2007 7

1. Introduction

This document describes the installation and configuration process for S4PM, version
5.18.0.

The Simple, Scalable, Script-based Science Processor for Measurements (S4PM) is a
NASA developed system for highly automated processing of science data. S4PM is the
main processing engine at the Goddard Earth Sciences Data and Information Services
Center (GES DISC). In addition to being scalable up to large processing systems such as
the GES DISC, it is also scalable down to small, special-purpose processing strings.

S4PM consists of two main parts: the kernel is the Simple, Scalable, Script-based Science
Processor (S4P), an engine, toolkit and graphical monitor for automating script-based,
data-driven processing. The S4PM system is built on top of S4P and implements a fully
functioning processing system that supports a variety of science processing algorithms
and scenarios.

S4PM requires Perl (5.6.0 or higher) with the Perl Tk module. If interoperating with ECS,
you will also need the DBI and supporting Sybase modules. On Mac OS 10.x, you will
need to have the optional Mac X11 and Xcode packages installed. S4PM has been run
successfully on Irix, Linux (Red Hat), Solaris, Macintosh OS X, and Microsoft Windows.

S4PM was released to the open source community under the NASA Open Source
Agreement in April 2005 with version 5.6.2. The software is available from SourceForge
at this URL: http://sourceforge.net/projects/s4pm/.

1.1 Goals of S4PM

The main goal of S4PM is to automate science processing to the extent that a single
operator can monitor all of the processing in an "industrial-size" data processing center.
A second goal is to be flexible enough to easily add new processing strings or new
algorithms to an existing string with a minimum of effort.

High usability is another key goal of S4PM, deriving from the need for more automation
at less operational cost. Specific goals are:

• Allow a single operator to manage and monitor hundreds of jobs simultaneously.
• Drill down to troubleshoot a problem in two mouse clicks.
• Set up a new processing string in less than 30 minutes.

S4PM 5.18.0 Installation and Configuration Guide: 1. Introduction

1/26/2007 8

1.2 Future Directions

The architecture of S4PM and S4P was specifically designed to be highly modular so that
it could evolve quickly and flexibly. It has already evolved from data-driven processing
of MODIS instrument data to AIRS processing to on-demand subsetting based on user
requests. Version 5.7.0 was the first release incorporating data mining into S4PM,
allowing users to upload algorithms via a Web interface for execution at the GES DISC.

For the future, S4PM will evolve to:

• Support an ever-increasing variety of processing algorithms, scenarios and data
interfaces.

• Increase the automation of failure monitoring and recovery.
• Reduce the time and expertise needed to setup and adapt S4PM to new processing

algorithms.

We hope that some or all of these goals will be reached by collaborating with the open
source community.

1.3 Changes in S4PM 5.18.0

The following is a list of changes over version 5.17.0:

1. Bug 422 Fixed: Enhance PDR Validation - Traps malformed FILE_GROUPs
with no FILE_SPECs or END_OBJECT

2. Bug 555 Fixed: Bug in s4pm_find_by_coverage.pl - A modification was made
to this script so that by default it will consider a data file as found if it partially
overlaps the processing period in coverage whereas the -full option is needed to
demand that there be complete overlap.

3. Bug 558 Fixed: Allow Appending Command Line Options - A new hash,
%commands_addenda, was added to support the adding of command line options
to commands running in S4PM stations. The primary hash key is the station name
and the secondary hash key is the work order type. The value is something to be
added to the command associated with that work order type in that station.

4. Bug 559 Fixed: Allow FIFO to Override Default Sort Order - A modification
to Stringmaker now allows you to override the default $cfg_sort_jobs parameter
with an alternative, such as FIFO.

5. Bug 560 Fixed: Change s4pm_export.pl to Support AIRS Granule Browse -
A fix was made to the Export station code to address the output EXPORT work
order for AIRS Browse granules.

6. Bug 561 Fixed: Invalid PDRs From s4pm_run_algorithm.pl for AIRS
Browse - A fix was made to produce valid PDRs for AIRS Browse granules.

S4PM 5.18.0 Installation and Configuration Guide: 1. Introduction

1/26/2007 9

7. Bug 563 Fixed: Redefinition of copy() Subroutine in S4P - One line was
changed in S4P::FileGroup.pm

8. Bug 564 Fixed: Errors from MetFile.pm called in s4pm_export.pl - Added
"no warnings 'uninitialized'"

9. Bug 566 Fixed: Add Capability for Disk Pool Map Overrides - A minor
modification was made to Stringmaker so that the default disk pool map (disk
pool to data type) could be overridden in the Stringmaker String configuration
file.

10. Bug 579 Fixed: Stage For Pickup Station Not Created in Data Mining - A bug
that resulted in a malformed Stage For Pickup station in Data Mining was fixed.

11. Bug 582 Fixed: Bug in S4PM::parse_patterned_filename() - A fix was made,
actually in s4pm_sweep_data.pl, to address this issue.

12. Bug 605: Can't Start Compose Request GUI in Acquire Data Station - A
change to Stringmaker was made to ensure that that last line of every
configuration file generated contains a 1. This didn't fully address this bug, but it
did highlight the need for this particular fix.

13. Bug 635 Fixed: XML and Request Data Stub Files Not Getting Deleted - This
was traced to several bugs in the wipe_handle() subroutine of the
s4pm_sweep_data.pl script.

14. Bug 644 Fixed: Granule Container Directories Not Getting Deleted - This was
traced to another bug in the wipe_handle() subroutine of s4pm_sweep_data.pl and
fixed.

15. Bug 654 Fixed: XML Files Not Moved Along With Data - A bug resulting in
XML files being left behind after data were moved from the INPUT disk pool to
the data type disk pool was fixed.

16. Bug 660 Fixed: DataRequest::find_urls_by_datatime() Problem with .jpg
Files - Modified to be more general.

17. Extensions in S4P::FileGroup and S4P::FileSpec to Support Browse Images -
Several modifications were made to FileGroup.pm and FileSpec.pm to handle
Browse image files needed for AIRS.

18. Run Tokens - The ability for multiple stations to "share" a set of processors has
been added. This is done through a tokenmaster station, running the new script
s4p_token.pl, and a %cfg_token configuration variable (keyed on job_type) in the
various stations sharing the tokens. Modifications have been made to S4P.pm and
stationmaster.pl to spawn jobs but not begin actual execution until granted a token
from the tokenmaster station. Once the job succeeds or fails, the token is released.

19. Data Handles Support - Implemented data handle support (formally called file
handles) in Register Data via the -H option.

S4PM 5.18.0 Installation and Configuration Guide: 2. Related Documentation

1/26/2007 10

2. Related Documentation

The S4PM home page is at: http://s4pm.sci.gsfc.nasa.gov/ where the following
documents are available:

• S4PM 5.18.0 Operations Guide
• S4PM 5.18.0 Design Document
• S4P Users Guide
• S4PM 5.18.0 Release Notes

S4P5.18.0.0 Installation and Configuration Guide: 3. Installing S4PM

1/26/2007 11

3. Installing S4PM

This section describes how to download and install S4PM.

S4PM is available on SourceForge at http://sourceforge.net/projects/s4pm/

3.1 Installation Requirements

S4PM has been successfully installed on SGI machines running IRIX, Sun machines
running Solaris, and Linux machines running Red Hat. It should work on any UNIX
machine. S4PM has also been tested successfully on a Window XP machine (using
ActiveState Perl), but the testing here has been very light and recent versions of S4PM
have not been regression tested. We would appreciate hearing from those of you who
have run S4PM under Windows.

S4PM requires Perl 5.6.0 or later (it might work with earlier versions). It also requires the
Perl Tk module.

3.2 Basic Installation

There are three mandatory files to download:

1. S4PM-5.18.0.tar.gz
2. S4P-5.18.0.tar.gz
3. S4PM_CFG-5.18.0.tar.gz

There are also two optional packages. One is a test package that will be discussed in
Section 3.3:

S4PM_TEST-5.18.0.tar.gz

The other optional package supports the Data Mining Edition (DME) capability of S4PM;
this will be discussed in Section 3.5:

S4PM_DME-5.18.0.tar.gz

Download at least the three mandatory files into some directory on the machine where
you will install S4PM. Version 5.18.0 is the latest stable release of S4PM as of this
writing. If, however, newer versions are out, the directions below should still apply; just
adjust the version portion of the file names accordingly.

The directory you download these files into is only used for installing S4PM and can be
removed later.

S4P5.18.0.0 Installation and Configuration Guide: 3. Installing S4PM

1/26/2007 12

Unzip and untar each of the three mandatory files. On Linux, you can untar and unzip
with one command:

tar xvzf S4PM-5.18.0.tar.gz
tar xvzf S4P-5.18.0.tar.gz
tar xvzf S4PM_CFG-5.18.0.tar.gz

On other UNIX machines, you may have to unzip and untar separately:

gunzip S4PM-5.18.0.tar.gz && tar xvf S4PM-5.18.0.tar
gunzip S4P-5.18.0.tar.gz && tar xvf S4P-5.18.0.tar
gunzip S4PM_CFG-5.18.0.tar.gz && tar xvf S4PM_CFG-
5.18.0.tar

Unpacking these tar files will result in three subdirectories: S4P-5.18.0, S4PM-5.18.0,
and S4PM_CFG-5.18.0.

Change directories into the S4P-5.18.0 directory first:

cd S4P-5.18.0

For installation of the binaries into the standard system directories on your machine, run
the following:

perl Makefile.PL
make
make test (optional)
make install
make clean (optional)

Change directories into the S4PM_CFG-5.18.0 next and then run the same steps as
above.

Finally, change directories into the S4PM-5.18.0 next and then run the same steps as
above.

3.3 Customized Installation

You can choose to install S4PM into a non standard location. This means that you will
need to specify where the binaries and Perl library modules go directly.

First, you’ll first need to set the environment variable PERLLIB (on Linux, use
PERL5LIB instead) to the alternate location of the libraries. Both the S4P and S4PM
libraries will need to be included (see example below) and you will need to set this
environment variable before you build S4PM. The PERLLIB (or PERL5LIB)
environment variables will also have to be set correctly in order to run S4PM. Finally,
run the following commands instead of the ones above:

S4P5.18.0.0 Installation and Configuration Guide: 3. Installing S4PM

1/26/2007 13

perl Makefile.PL PREFIX=<alternate_directory>
make
make test
make install
make clean (optional)

where <alternate_directory> determines both where the binaries and libraries are to be
installed. The binaries (scripts and configuration files) will be installed in
<alternate_directory>/bin; the S4P libraries will be installed into
<alternate_directory>/lib/perl5/site_perl/perl5.x.x/; and the S4PM libraries will be
installed into <alternate_directory>/lib/perl5/site_perl/perl5.x.x/<architecture>. See
example below.

Also, if you install the binaries into a non standard directory, the user account under
which S4PM will be run will have to include this new location in the PATH environment
variable.

3.3.1 Customized Installation Example

For example, you wish to install the S4PM binaries and libraries under /home/jdoe rather
than in the standard system directories. Follow these steps:

1. Log in as the S4PM user that will run S4PM.

2. Set the PERLLIB (it may be PERL5LIB if Linux) to where the libraries are to be

installed. For example (in Bourne, Korn, Bash shell or their variants):

export PERLLIB=/home/jdoe/lib/perl5/site_perl/5.8.3:
/home/jdoe/lib/perl5/site_perl/5.8.3/i386-linux-
thread-multi

3. Run the install:

perl Makefile.PL PREFIX=/home/joe
make
make test
make install
make clean (optional)

4. In the S4PM user’s shell start up scripts (e.g. .bashrc), set the PERLLIB or
PERL5LIB environment variable as above and also set the PATH environment
variable to include /home/joe/bin.

The S4PM components will be installed into the directories as indicated in Table 3-1
below.

S4P5.18.0.0 Installation and Configuration Guide: 3. Installing S4PM

1/26/2007 14

Component Installation Directory

Executable Scripts /home/jdoe/bin
Configuration Files /home/jdoe/bin
S4P Perl Library Modules /home/jdoe/lib/perl5/site_perl/perl5.8.5
S4PM Perl Library Modules /home/jdoe/lib/perl5/site_perl/perl5.8.5/i386-linux-thread-multi

Table 3-1. S4PM components and where they would go if alternate location is set to /home/jdoe.
Here, we assume a Linux installation using Perl 5.8.5.

3.4 Optional Test Package Installation

The optional package to download is S4PM_TEST-5.18.0.tar.gz. This package allows
one to run a quick test of the S4PM installation and also provides some working
examples of how to configure a S4PM string. This package will:

1. Generate a self-consistent set of Stringmaker configuration files with which to
build a test S4PM string.

2. It will run Stringmaker using those configuration files and build the S4PM string
under the current working directory. This S4PM string will be configured for two
“fake” algorithms, the output of the one feeding the other.

3. It will bring up the S4PM Monitor and turn on the stations in the string.
4. The algorithms configured to run will then be run.
5. After the runs are completed, the output data produced will be verified.
6. The output data will then be exported to ersatz export (i.e. sent to the bit bucket).
7. The string will then be shutdown.

To run this optional package, follow these steps:

1. Create a temporary directory in which to run the included script and conduct the
testing. This should be a new and empty directory to avoid clobbering any
existing files.

2. Copy S4PM_TEST-5.18.0.tar.gz into that new directory and unpack it as
described above for the other S4PM packages.

3. Verify that the Perl binary in your path is the one where the S4PM modules have
been installed:

a. To test, run: perl –e ‘use S4PM;’
b. If you get no error messages, you should be ok.
c. If you do get error message, then you need to determine under which Perl

location S4PM was installed and use that Perl binary:
/otherlocation/perl –e ‘use S4PM;’

d. If this works, it means that your Perl binary is in another location and you
should adjust your path so that it picks up this location rather than the
default.

4. You may have to modify the first line of the s4pm_run_test.pl script to point to
the correct location of the Perl binary.

S4P5.18.0.0 Installation and Configuration Guide: 3. Installing S4PM

1/26/2007 15

5. Execute the run script (Mac users: you’ll need to be doing this in an X11
window):

./s4pm_run_test.pl

6. If the script cannot find the S4PM binaries and configuration files from your

PATH, it will quit. In this case, you will need to update your PATH with the path
to these binaries and configuration files and rerun the script. Both items should be
known from the S4PM installation.

7. The script will then automatically build a string and then start it up. Before each
step is performed, you will be prompted to continue or proceed. If you want to run
the script without being prompted, include the –b option as in:

./s4pm_run_test.pl –b

After the test has run, output will indicate whether or not the test was successful.
To rerun the test without having to recreate the string, use the –r option as in:

./s4pm_run_test.pl –r

3.5 Optional DME Installation

The other optional package for supporting the Data Mining Edition of S4PM install
differently than the rest of S4PM. In the top level directory (after unpacking the tar file)
are two Korn shell scripts that when run, install the entire set of lower level S4PM DME
packages. There is as yet no documentation on the installation of S4PM DME. Expect
this soon.

S4PM 5.18.0 Installation and Configuration Guide: 4. Stringmaker Overview

1/26/2007 16

4. Stringmaker Overview

This section describes Stringmaker and how it is used to configure and set up S4PM
strings. It is assumed that S4PM has been installed properly as described in Section 3.

Since Stringmaker, as the name implies, is a tool to build and set up S4PM strings, it is
prudent to first define what is meant by a string. An S4PM string is a single instance of
S4PM, its complement of stations, and the algorithms configured to run in that string.
More than one S4PM string can be set up on a single machine. Why have more than one
string? A classic reason to separate strings is if you want one string to be for real-time
processing driven by event notification (data via subscription) and the other to be for
reprocessing or for filling in holes and gaps with data being ordered. In such a case, the
algorithms may be the same although the production rules may differ.

Another reason may be that you have algorithms that do not interact with each other (e.g.
supporting two different missions) or the algorithms logically fall into distinct groups
(e.g. again, supporting different missions). In this case, it may be appealing to separate
them into multiple S4PM strings.

On the other hand, in cases where the same data are used by multiple sets of algorithms,
it may pay to have them run within the same string to minimize costly data transfers.

4.1 Why Stringmaker?

Before using Stringmaker, you will need to answer several questions regarding S4PM at
your site:

Will S4PM be interfacing with ECS at your site? S4PM doesn't require ECS.

Will there ultimately be more than one S4PM string configured either on the same
machine or on several machines?

What type of S4PM string do you want? There are several flavors:

• Near real-time processing driven by (nominally) ECS subscriptions.
• Reprocessing in which data for a period of time are manually ordered.
• On-demand processing in which events (e.g. someone making a request through a

client) drive production.

S4PM strings are nothing more than a number of directories representing stations with
each directory containing one or more scripts and configuration files. It is possible to
create a string by hand. This is, however, a laborious task since it involves many manual
steps, a mistake in any of which could render the S4PM string useless.

S4PM 5.18.0 Installation and Configuration Guide: 4. Stringmaker Overview

1/26/2007 17

Stringmaker was created to alleviate this burden by automating the process of creating
and modifying strings. Stringmaker can handle any flavor of S4PM.

4.2 Preparation For Stringmaker

You will have to make several decisions before configuring and running Stringmaker:

• Who will be the user running S4PM? This same user needs to be the one running
Stringmaker. In order for Stringmaker to be responsible for multiple strings, the
same user needs to be used for all strings.

• If you will be running S4PM on multiple machines, you will need to have some
directory location that is visible across all these machines. Typically, it is the
home directory of the S4PM user.

• The location of the algorithms to be run in S4PM will have to be visible to the
S4PM user and be granted the correct permissions to be executed by the S4PM
user. Any static files used by the algorithms will need to be readable by the S4PM
user. Algorithm locations can be different for each S4PM string.

• For S4PM strings that need to interface with ECS:
o If you wish to configure a string to get data from the ECS via requests for

those data, S4PM uses the ECS Science Data Server Command-Line
Interface (SCLI). Distribution Notifications (DNs) are sent via e-mail to
the S4PM user once the data have been pushed. In order for these DNs to
be processed, the S4PM user needs to redirect e-mailed DNs to the
Receive DN station of the string for whom the data were ordered. This is
best accomplished with a procmail filter.

o For subscription based processing with data from the ECS, the S4PM user
will need to subscribe to ECS notifications of insert of needed data types.
These notifications are e-mailed to the S4PM user and, as above, procmail
is the most efficient way to direct those e-mails to the Subscription Notify
station. Note that this station sits across all S4PM strings.

4.3 Stringmaker Configuration Files

Stringmaker is a Perl script that builds S4PM strings based on configuration parameters
set in several hierarchical configuration files. Most of the work in getting Stringmaker to
build the strings you want are in setting up these configuration files. Once set up
properly, S4PM strings can be created or modified easily.

The Stringmaker configuration files are described below. Stringmaker reads these
configuration files in the order shown. The configuration files are organized so that the
most global parameters are specified at the top of the configuration file chain and
whereas the more specific ones are specified at the bottom.

S4PM 5.18.0 Installation and Configuration Guide: 4. Stringmaker Overview

1/26/2007 18

4.3.1 The Stringmaker Global Configuration File

The global configuration file is named s4pm_stringmaker_global.cfg and contains
parameters that are common across all S4PM strings. Anything in this file, however, can
be overridden in any of the following configuration files.

Section 5 has a detailed discussion on the Stringmaker Global configuration file.

4.3.2 The Stringmaker Host Configuration File

The host configuration file contains parameters that are common to a particular host
machine, but that may differ from one machine to another. The actual file name for this
configuration file is the host machine name with the .cfg file name extension. The host
machine name is the same as what the 'uname -n' UNIX command would return (note that
under Mac OS X, the name is often appended with .local; the configuration file name will
have to match this). For example, g0spg11.cfg. There needs to be one such configuration
file for each machine on which S4PM is to be installed.

Anything in this file can be overridden in any of the following configuration files.

Section 6 has a detailed discussion on the Stringmaker Host configuration file.

4.3.3 The Stringmaker Data Types Configuration File

The data types configuration file is named s4pm_stringmaker_datatypes.cfg and contains
data type parameters for all S4PM strings. It is intended to be a pool from which
individual strings draw information about data types.

As above, anything in this file can be overridden in any of the following configuration
files.

Section 7 has a detailed discussion on the Stringmaker Data Types configuration file.

4.3.4 The Stringmaker Static Configuration File

The static configuration file is named s4pm_stringmaker_static.cfg and, unlike the ones
above, is not meant to be modified. It is intended to be static as its name implies. It is in
this file where a number of the S4PM stations are described and their configuration files
set.

Section 8 has a detailed discussion on the Stringmaker Static configuration file.

4.3.5 The Stringmaker String Configuration File

This configuration file is unique for each individual S4PM string and is meant to specify
parameters unique to a string. Unlike with the above configuration files, the file name is

S4PM 5.18.0 Installation and Configuration Guide: 4. Stringmaker Overview

1/26/2007 19

completely arbitrary although a consistent naming convention is recommended if
your site has multiple strings.

Among other things, this configuration file sets what algorithms are to be run. It is
assumed that algorithms listed here have their own algorithm configuration files (see
Section 4.3.6).

Section 9 has a detailed discussion on the Stringmaker String configuration file.

4.3.6 The Stringmaker Algorithm Configuration Files

The algorithm configuration files specify information about the algorithms. There needs
to be one such file for each algorithm. The name of file must be the algorithm name
followed by an underscore followed by the profile and then the .cfg file name extension.

For example:

MoPGE01_RPROC.cfg

As one would guess, these algorithm configuration files contain parameters having to do
with a particular algorithm to be run in S4PM. This includes specifying the data types to
be input and output by the algorithm. These data types must exist in the
s4pm_stringmaker_datatypes.cfg file. Unlike with all the other Stringmaker configuration
files, the algorithm configuration files are part of the algorithm package and reside where
the rest of the algorithm package resides.

Section 10 has a detailed discussion on the Stringmaker Algorithm configuration files.

4.3.7 The Stringmaker Jobs Configuration File

The jobs configuration file is named s4pm_stringmaker_jobs.cfg and it contains only one
parameter. That is, the maximum number of jobs that can be run in a S4PM station in a
particular string. Unless set in this file, the maximum number of jobs that can be run in
any station is five. For stations where the number needs to be different (higher or lower),
this file is used. Note that unlike the other Stringmaker configuration files, this one is
optional.

Section 11 has a detailed discussion on the Stringmaker Jobs configuration file.

4.3.8 The Stringmaker Derived Configuration File

The derived configuration file is named s4pm_stringmaker_derived.cfg and this
configuration file is at the bottom of the hierarchy. Based on all of the above
configuration files, this file makes decisions on which stations are to be configured in a
particular string and how they are supposed to interact with one another. Like the
s4pm_stringmaker_static.cfg file, this file is not meant to be modified.

S4PM 5.18.0 Installation and Configuration Guide: 4. Stringmaker Overview

1/26/2007 20

Section 12 has a detailed discussion on the Stringmaker Derived configuration file.

4.3.9 Configuration File Summary

The minimum set of configuration files needed for the simplest S4PM string running a
single algorithm is seven:

1. s4pm_stringmaker_global.cfg
2. <host>.cfg
3. s4pm_stringmaker_datatypes.cfg
4. one <algorithm>_<profile>.cfg file
5. s4pm_stringmaker_static.cfg
6. <string>.cfg
7. s4pm_stringmaker_derived.cfg

Of these, you only need to create/modify five of them:

1. s4pm_stringmaker_global.cfg
2. <host>.cfg
3. s4pm_stringmaker_datatypes.cfg
4. one <algorithm>_<profile>.cfg
5. <string>.cfg

Sections 5 through 12 will delve into each of the configuration files in detail.

4.3.10 Running Stringmaker

This section describes how to actually run Stringmaker.

4.3.10.1 Before Running Stringmaker

Before running Stringmaker on an existing string, you need to consider whether or not
the string needs quiesced. By quiesced, we mean a state in which all stations in the string
are turned off (show up as red in the S4PM Monitor) and there are no jobs running in any
of the stations (all jobs are either blue for queued up or red for failed).

To play it safe, always quiesce (shut off all stations and allow any running jobs to
complete) your string before you run Stringmaker. For small configuration changes, you
may get away with not having to do so. This is, however, not recommended.

For particularly large or deep changes, you may even want to run the string “dry” prior to
running Stringmaker. That is, allow the string to finish up processing and exporting data
from any current and queued jobs, but not allow more data to come into the string.

S4PM 5.18.0 Installation and Configuration Guide: 4. Stringmaker Overview

1/26/2007 21

4.3.10.2 The Stringmaker Command

The command to run Stringmaker is:

s4pm_stringmaker.pl –c|-u|-a –s <string>.cfg

where <string>.cfg is the name of the Stringmaker string configuration file.

With the –c option, a new S4PM string is created. If one already exists, it will be
overwritten.

With the –u option instead, all station and script configuration files are created
overwriting any that may already exist. With this option, as opposed to the –c, no new
links or directories will be created. Thus, you don’t want to use the –u option if adding a
new or updated algorithm to S4PM (since this involves the creation of some new
directories and links).

The –a option is for a very special case. It is only used when changes have been made to
the Stringmaker jobs configuration file such as increasing the maximum number of jobs
in Run Algorithm in some string. In this case, Stringmaker will only alter the station
configuration files of the stations affected by the change and nothing else.

If in doubt, the –c option is always safe and there is almost no performance penalty for
running it over the other options.

For example:

s4pm_stringmaker.pl –c –s S4PM10_MO_RE.cfg

will create (or re-create) a string whose string configuration file is named:
S4PM10_MO_RE.cfg.

4.3.10.3 The Stringmakerall Command

Stringmakerall is a tool that allows Stringmaker to run on multiple strings. This is useful
if you have many S4PM strings on a particular box because it allows Stringmaker to be
run in a batch-like mode. All you need to do is pass Stringmakerall a list of Stringmaker
string configuration files as in:

s4pm_stringmakerall.pl *

or:

s4pm_stringmakerall.pl *.cfg

S4PM 5.18.0 Installation and Configuration Guide: 4. Stringmaker Overview

1/26/2007 22

Stringmakerall automatically interrogates the list of files it is giving to determine which
are valid Stringmaker string configuration files and which are not. It also automatically
screens out strings that are not installed on the current machine.

The –test option shows the results of Stringmakerall without actually invoking
Stringmaker. This is useful if you want to make sure that it can correctly Stringmaker the
right strings.

The –skip option allows certain strings (that would otherwise be run with Stringmaker) to
be skipped. The argument is an exclusion list that will be matched against the
configuration file names. For example:

s4pm_stringmakerall.pl –skip ‘AI MO’ *.cfg

will skip any configuration files whose names contain ‘AI’ or ‘MO’ (case sensitive).

To test such a situation, you may want to run with the –test option first as in:

s4pm_stringmakerall.pl –skip ‘AI MO’ –test *.cfg

and only if the results look sound remove the –test option.

Note that the list of files must be specified at the end, after the other options.

4.3.11 Using The S4PM Monitor To Install An Algorithm

Stringmaker or Stringmakerall can be run on the command line as discussed in Sections
4.3.10.2 and 4.3.10.3 to add (or remove) an algorithm from S4PM. It would simply
involve editing the string configuration file to first remove the algorithm from the list in
the @run_sorted_algorithms parameter array and then running Stringmaker with the –c
option. If only the version of the algorithm changed, then the string configuration file
would be edited to change the algorithms version in the %algorithm_versions hash
parameter in the same file before running Stringmaker.

But there is an easier way:

From the S4PM Monitor, right-click on the Configurator station button and select Install
Algorithm or Uninstall Algorithm. For installation, you will be asked to first select the
string you wish to alter and then select the algorithm configuration file corresponding to
the algorithm you wish to install. Remember, it is assumed that you already placed the
algorithm package unpacked into the correct location.

Uninstalling works much the same way. You will be shown a list of algorithms currently
configured for this string. Select the one you wish to delete. Note that the algorithm
package will not be deleted from disk; only S4PM will be configured not to run it.

S4PM 5.18.0 Installation and Configuration Guide: 4. Stringmaker Overview

1/26/2007 23

Underneath the covers, it is Stringmaker that gets run with installing or uninstalling an
algorithm in this manner. The advantage is that the string does not need to be quiesced or
run dry. The appropriate stations will reconfigure themselves for the new algorithm (or
lack thereof).

4.4 S4PM String Directory Structures

In this section, we will discuss the directory structures employed by S4PM for several
common configurations, starting with the most basic.

4.4.1 Basic S4PM Directory Structure

In the simplest case, the entire S4PM string is placed under a single root directory defined
by the $s4pm_root parameter (typically set in the Stringmaker Global configuration file).
Below $s4pm_root is a directory uniquely named for the string taken from the
$data_source parameter. Next to it, is a directory named stringmaker by default (the name
and location can be changed via the $stringmaker_root parameter).

Below $data_source is a directory for the algorithms named pge and a directory for the
S4PM stations named station. The location of the algorithms can be overridden with the
$algorithm_root parameter.

The S4PM station directories all live under the stations directory. Included along side the
stations themselves are the DATA (which has its own subdirectories) and PDR
directories. The directory used for PANs is the receive_pan station directory itself.

This basic structure is illustrated in the following figure. The dashed lines in the figure
indicate symbolic links. Thus, the ALGORITHM directory under stations is actually a
symbolic link to the pge directory; the configurator station directory is actually a
symbolic link to the stringmaker directory.

Note: One caveat you should be aware. If you uninstall an
algorithm for which jobs corresponding to that algorithm
are still being processed in the string, those jobs will
ultimately fail since they will be passed to a station that
has, in the interim, lost all memory of that algorithm. This
isn’t a problem, but you may opt to first let jobs
corresponding to the algorithm work themselves out
before initiating the uninstall.

S4PM 5.18.0 Installation and Configuration Guide: 4. Stringmaker Overview

1/26/2007 24

Figure 4-1. Basic S4PM directory structure. It assumes that $s4pm_root is specified, but that
$ingest_root, $ecs_root, $global_root, $data_root are not. It also assumes that the $instance

parameter has not been set. Solid lines represent directory hierarchy and the curved dashed lines
represent symbolic links.

4.4.2 Multiple Instance S4PM Directory Structure

A change in the basic directory structure discussed above is the introduction of multiple
instances of S4PM strings under a single $data_source. Each instance gets it own S4PM
station tree, but sharing a single algorithm directory and a single stringmaker directory.
This type of configuration is suitable for situations where the production rules of the
algorithms running in the strings are different even though the algorithms themselves are
the same. The typical case is for forward processing versus reprocessing. The algorithms
may be the same, but the timers in the production rules may be quite different.

Any number of instances be set up all sharing the algorithm and stringmaker directories
and it is done by simply setting the $instance parameter in the Stringmaker String
configuration file.

The figure below illustrates a multiple instance scenario.

S4PM 5.18.0 Installation and Configuration Guide: 4. Stringmaker Overview

1/26/2007 25

Figure 4-2. Multiple instance S4PM directory structure. It assumes that $s4pm_root is specified, but

that $ingest_root, $ecs_root, $global_root, $data_root are not. Here we assume that the $instance
parameter has been set (to ‘forward’ in one string and ‘reproc’ in the other). Solid lines represent

directory hierarchy and the curved dashed lines represent symbolic links.

4.4.3 S4PM Directory Structure With Separate Ingest Root

In the basic directory structure, the directories for data, PDRs, and PANs all reside under
the stations directory (named DATA, PDR, and receive_pan, respectively). Setting the
$ingest_root parameter changes the locations of these directories.

The figure that follows illustrates the structure when $ingest_root is set. Note that, for the
sake of clarity, we have left out of the diagram multiple instances. Multiple instances,
however, can be combined with the setting of $ingest_root. Also, the subdirectories under
the DATA directory have been left out. They will exist, however, under
$ingest_root/DATA.

S4PM 5.18.0 Installation and Configuration Guide: 4. Stringmaker Overview

1/26/2007 26

Figure 4-3. S4PM directory structure with a separate ingest root specified with the $ingest_root

parameter. We assume that $ecs_root, $global_root, and $data_root are not are not set. For the sake
of clarity, we are not showing the multiple instance case nor are the subdirectories under DATA
shown. Solid lines represent directory hierarchy and the curved dashed lines represent symbolic

links.

4.4.4 S4PM Directory Structure With Separate Ingest and Data Root

As a final illustration, we will now show a separate ingest root but with the setting for the
data directory being overridden with the $data_root parameter.

If $ingest_root is not set, the DATA directory lives under the stations directory. If
$ingest_root is set, the DATA directory then lives under $ingest_root and is named
DATA. In both cases, the data root can be overridden with a new name and location. This
is illustrated in the following figure.

Again, for clarity, the multiple instance case is not shown.

S4PM 5.18.0 Installation and Configuration Guide: 4. Stringmaker Overview

1/26/2007 27

Figure 4-4. S4PM directory structure with a separate ingest root and data root. These are specified

with the $ingest_root and $data_root parameters, respectively. We assume that $ecs_root, and
$global_root, are not are not set. For the sake of clarity, we are not showing the multiple instance

case. Solid lines represent directory hierarchy and the curved dashed lines represent symbolic links.

4.4.5 S4PM Structure With Global Root

When S4PM is installed on multiple machines under a single S4PM user account, a
number of stations need to be installed in a location visible from all these machines. This
locatioin is set via the $global_root parameter which is set to the root directory to be
used. A cross-mounted home directory for the S4PM user is typically used. Stringmaker
will place certain directories under the $global_root and create symbolic links back to the
$station_root area .

A global root scenario can be combined with separated ingest roots and with multiple
instances per data source.

This scenario is illustrated in the following figure:

S4PM 5.18.0 Installation and Configuration Guide: 4. Stringmaker Overview

1/26/2007 28

Figure 4-5. S4PM directory structure with a separate global root using the $global_root parameter.
For the sake of clarity, we are not showing the multiple instance or separated ingest root cases. Solid

lines represent directory hierarchy and the curved dashed lines represent symbolic links.

4.5 Simple Non-ECS S4PM Deployments

Simple deployments of S4PM mean one or two strings on a single machine without any
need to interoperate with ECS. In this case:

1. Set $s4pm_root, but do not set $ecs_root, $global_root, or $ingest_root. These
will be given appropriate default settings. Refer to Section 5 for details on these
parameters.

2. Create some directory in which to configure the several strings on the single
machine. This directory will define $s4pm_root.

3. Under $s4pm_root, make a directory named ‘stringmaker’.
4. Change directories into $s4pm_root/stringmaker and create a subdirectory named

for the machine (the return of ‘uname –n’). Change into this subdirectory.
5. Under $s4pm_root/stringmaker/<machine>, copy or move all of your Stringmaker

configuration files (except for the Algorithm configuration files).
6. Run Stringmaker from within this directory.

S4PM 5.18.0 Installation and Configuration Guide: 4. Stringmaker Overview

1/26/2007 29

4.6 Simple ECS S4PM Deployments

In this case, we are dealing with one or two S4PM strings on a single machine that do
interoperate with ECS:

1. Set $s4pm_root, but do not set $global_root. This will default to $s4pm_root.
2. Set $ecs_root to the root of the ECS custom code, typically

/usr/ecs/$mode/CUSTOM, where $mode is TS1, TS2, or OPS.
3. Set $ingest_root to a location where PDRs for data produced by S4PM can be

polled by ECS. The data referenced in those PDRs will also have to be accessible
to ECS ingest.

4. As above, under $s4pm_root, make a directory named ‘stringmaker’.
5. Change directories into $s4pm_root/stringmaker and create a subdirectory named

for the machine (the return of ‘uname –n’). Change into this subdirectory.
6. Under $s4pm_root/stringmaker/<machine>, copy or move all of your Stringmaker

configuration files (except for the Algorithm configuration files).
7. Run Stringmaker from within this directory.

S4PM5.18.00 Installation and Configuration Guide: 5. The Stringmaker Global
Configuration File

1/26/2007 30

5. The Stringmaker Global Configuration File

The Stringmaker global configuration file is meant for parameters that are global across
all S4PM strings at a particular site. For sites that will install S4PM on multiple host
machines, some consideration needs to be given for how production will be parceled to
these strings.

The following is a list of all parameters in the Stringmaker Global configuration file:

Parameter Section Mandatory or Optional
$user 5.2 Mandatory
$s4pm_email 5.3 Optional
$global_root 5.4 Mandatory
$stringmaker_root 5.5 Mandatory
%run_env_variables 5.6 Optional
$dataserver_ur 5.7 Mandatory for ECS
@priviliged_users 5.8 Optional

Table 5-1. Parameters in the Stringmaker Global configuration file.

5.1 File Name

The file name for the Stringmaker global configuration file is:

s4pm_stringmaker_global.cfg

5.2 $user

This parameter is MANDATORY.

The $user parameter is the name of the user account that will be managing and running
all S4PM strings. This S4PM user will own all files in the string. Stringmaker itself needs
to be run as this user.

Example:

$user = 's4pmuser';

5.3 $s4pm_email

This parameter is OPTIONAL, but required if $input_symlink_root is set in the
Stringmaker String configuration file (see Section 9).

The $s4pm_email is the e-mail address of the S4PM user $user. Remember to escape the
@ symbol when setting it as in the following example:

S4PM5.18.00 Installation and Configuration Guide: 5. The Stringmaker Global
Configuration File

1/26/2007 31

$s4pm_email = ‘s4pmuser\@myhome.com’;

5.4 $global_root

This parameter is OPTIONAL.

The $global_root parameter is a root directory that is visible across all S4PM strings at
sites that support multiple S4PM strings running on multiple machines. Typically, this
variable is set to a cross-mounted directory such as the home directory of the S4PM user
or some directory therein. For sites where S4PM strings reside only on a single machine,
this variable can be set to $s4pm_root (see Section 6.7). The default is $HOME directory
of the user running Stringmaker.

The default is $s4pm_root in the Stringmaker Hosts configuration file (see Section 6).
For sites only deploying a few S4PM strings on a single machine, this default simplifies
the directory layout.

Example:

$global_root = "/home/s4pmuser/s4pm";

5.5 $stringmaker_root

This parameter is OPTIONAL.

When a S4PM string is first created, Stringmaker needs to do so from within a designated
directory where the Stringmaker configuration files reside (with the exception of the
algorithm configuration files which reside with the algorithms). This designated directory
then becomes the directory of the Configuration station in the string created. The
Configurator station can be viewed as the manifestation of Stringmaker within an S4PM
string.

The parameter $stringmaker_root is the directory from which Stringmaker is run and is
also the station directory of the Configuration station. As such, this directory must be
visible across all machines that host strings that are to be managed by Stringmaker and
Configurator (such as the cross-mounted home directory of the user running the strings).

The default is $s4pm_root/stringmaker of the user running Stringmaker. For sites only
deploying a few strings on one machine, this is most appropriate.

Example:

$stringmaker_root = "/home/s4pmuser/s4pm/stringmaker";

S4PM5.18.00 Installation and Configuration Guide: 5. The Stringmaker Global
Configuration File

1/26/2007 32

5.6 %run_env_variables

This parameter is OPTIONAL.

The %run_env_variables parameter is an optional hash that allows environment variables
to be set for algorithms running in the Run Algorithm stations of all strings. Hash keys
are the environment variable names and hash values are their values. Environment
variables defined here will apply to all algorithms running in all strings. To have distinct
environment variables for each machine, place the %run_env_variables hash in the
<host>.cfg file instead. To have distinct environment variables for each string, place the
hash in the <string>.cfg file instead. Note that the environment variable PATH is
predefined by S4PM and should not be set in this hash.

Example:

%run_env_variables = (
'LM_LICENSE_FILE' =>
"/usr/ecs/$mode/COTS/IMSLv3v4/license/license.dat",
'HDFLOOKPATH' => "/tools/gdaac/$mode/bin",
);

5.7 $dataserver_ur

This parameter is MANATORY if interfacing with ECS, OPTIONAL otherwise.

The $dataserver_ur parameter is the Universal Reference (UR) of the ECS Science Data
Server. This parameter is only needed if S4PM is interfacing with ECS.

Note that if this parameter is set, Stringmaker infers that the string is interoperating with
ECS and will create stations that handle the S4PM-ECS interface. Thus, do not set this
parameter if you are not tied to ECS in any way.

Example:

$dataserver_ur =
'UR:10:DsShESDTUR:UR:15:DsShSciServerUR:13:[GSF:DSSDSRV]';

5.8 @privileged_users

This parameter is OPTIONAL.

The @privileged_users parameter is an array of users that are to be given permissions to
execute certain critical functions via the S4PM Monitor. The assumption here is that
S4PM is being run under a common user account (e.g. s4pmuser) yet you do not want

S4PM5.18.00 Installation and Configuration Guide: 5. The Stringmaker Global
Configuration File

1/26/2007 33

just anyone logged in as 's4pmuser' to execute some very critical functions. The critical
functions are shown below:

S4PM5.18.00 Installation and Configuration Guide: 5. The Stringmaker Global
Configuration File

1/26/2007 34

Critical Function Name Description

Kill All Kills all stations (stops them) and kills any jobs
running within those stations.

Bypass QA Force data to be registered within S4PM
(Register Data station) even if it fails quality
assurance (QA) checking.

Release Job Now Release a job that is running in the Select Data
station while accumulating input data for an
algorithm run.

Ignore Optional Instruct a job to stop looking for any more
optional input data for an algorithm (in the Find
Data station).

Ignore Required Instruct a job to stop looking for any more
required input data for an algorithm (in the Find
Data station).

Expire Current Timer Instruct a job to give up on the current optional
input it is looking for and move on to the next
(in the Find Data station).

Table 5-2. Critical operational functions for which the @privileged_users parameter applies.

Users listed in the @privileged_users array will need to supply their own user logon ID
and password via a pop-up box. They will need to do this in additional to being logged in
as the S4PM user. Only if the user is in the @privileged_users array and the password is
correct will the user be allowed to run the task. Otherwise, the user will be denied from
running the task.

The user 'any' is reserved to mean any user. This might be useful if you want to use the
pop-up box as a sort of confirmation that the task is to be carried out (i.e. are you sure?).

If this array is unset or empty, then no pop-up box will be issued prior to running any of
the above tasks. This is the default.

Example:

@privileged_users = (‘jdoe’, ‘rjones’, ‘msmith’);

5.9 Other Parameters

As alluded to earlier, other parameters discussed later that you find to be common across
all S4PM strings can be migrated "up the chain" into the s4pm_stringmaker_global.cfg
file. Conversely, parameters described above that are unique to a particular host or string

Note: Application of the @privileged_users parameter does not
constitute a security measure. It only helps to prevent
inadvertent or accidental tasks from being run.

S4PM5.18.00 Installation and Configuration Guide: 5. The Stringmaker Global
Configuration File

1/26/2007 35

can be set (or overridden) in the Stringmaker Host (Section 6) or Stringmaker String
(Section 9) configuration files, respectively.

5.10 Sample Stringmaker Global Configuration File

$s4pm_user = ‘s4pmuser’;
$global_root = “/home/$s4pm_user”;
$stringmaker_root = “$global_root/stringmaker”;
$dataserver_ur =
'UR:10:DsShESDTUR:UR:15:DsShSciServerUR:13:[GSF:DSSDSRV]';

Figure 5-1. A sample minimal Stringmaker global configuration file.

S4PM5.18.00 Installation and Configuration Guide: 6. The Stringmaker Host
Configuration File

1/26/2007 36

6. The Stringmaker Host Configuration File

The Stringmaker host configuration file is meant to handle parameters that may be
different from one host to another yet are common to all strings on a host. If certain
parameters described below are, in fact, global at your site,
you can opt to specify them in the s4pm_stringmaker_global.cfg file instead. In the
current release, however, the host configuration file is mandatory (although it can be
effectively empty).

The following is a list of all parameters in the Stringmaker Host configuration file:

Parameter Section Mandatory or Optional
$domain 6.2 Mandatory for ECS
$host 6.3 Mandatory
$host_alias 6.4 Optional
$bindir 6.5 Mandatory
$cfgdir 6.6 Mandatory
$s4pm_root 6.7 Mandatory
$ingest_root 6.8 Optional
$data_root 6.9 Optional
$pan_dir 6.10 Optional
$pdr_dir 6.11 Optional
$ecs_root 6.10 Optional
$toolkit_root 6.13 Optional
$local_s4pa_ftp_root 6.14 Optional

Table 6-1. Parameters in the Stringmaker Host configuration file.

6.1 File Name

The file name for the Stringmaker host configuration file is:

<host_name>.cfg

where <host_name> is the name of the machine. On UNIX machines, it is equivalent to
the output from the ‘uname –n’ command.

6.2 $domain

This parameter is MANDATORY if interfacing with ECS, OPTIONAL otherwise.

The $domain parameter is the Internet domain of the machines within the installation.
This assumes that all S4PM strings will be on machines within the indicated network.

Example:

$domain = 'gsfcb.ecs.nasa.gov';

S4PM5.18.00 Installation and Configuration Guide: 6. The Stringmaker Host
Configuration File

1/26/2007 37

6.3 $host

This parameter is MANDATORY.

The $host parameter is the name of the host machine the string runs on.

Example:

$host = 'g0spg11';

6.4 $host_alias

This parameter is OPTION.

The $host_alias parameter is only needed when the string is getting data from a S4PA
archive and the host machine on which S4PM is running is dual-homed. When the
Acquire Data station receives a DN, it compares the host name in the DN with the host
name as returned from the gethostbyname() function. If they match, Acquire Data will set
up symbolic links to the data rather than FTP’ing the data over. A dual-homed machine
could prevent Acquire Data from recognizing “self” from remote and hence, this
parameter explicitly lists the alternate name.

Example:

$domain = ‘gsfcb.ecs.nasa.gov’;
$host = ‘g0spg10’;
$host_alias = ‘g0spg10u.ecs.nasa.gov’;

6.5 $bindir

This parameter is MANDATORY.

The $bindir parameter is the directory where S4PM executables are located. This should
have been something you specified when installing S4PM. The location needs to be
visible across all S4PM strings on all machines.

Example:

$mode = "TS2";
$bindir = "/tools/gdaac/$mode/bin";

S4PM5.18.00 Installation and Configuration Guide: 6. The Stringmaker Host
Configuration File

1/26/2007 38

6.6 $cfgdir

This parameter is MANDATORY.

The $cfgdir parameter is the directory where baselined configuration files are located. By
default, this is the same directory as $bindir. The location needs to be visible across all
S4PM strings on all machines.

Note that $cfgdir does not refer to where the Stringmaker configuration files reside.
Rather, it is the location where other S4PM configuration files and configuration
templates reside after they are installed.

Example:

$mode = "TS2";
$cfgdir = "/tools/gdaac/$mode/bin";

6.7 $s4pm_root

This parameter is MANDATORY.

The $s4pm_root parameter is the root directory under which S4PM strings are located.
For each string installed on this host, Stringmaker will make unique subdirectories for
each string and each instance of a string under this root directory.

Example:

$mode = "TS2";
$s4pm_root = "/vol1/$mode/s4pm";

6.8 $ingest_root

This parameter is OPTIONAL.

The $ingest_root parameter is the root under which the PDR, PAN, and DATA
directories are placed. For each string installed on this host, Stringmaker will make
unique subdirectories for each string (using $data_source) and each instance (using
$instance if set) under this root directory.

By default, the DATA and PDR directories are placed under $s4pm_root along side the
station directories and the Receive PAN station directory (receive_pan) is the PAN
directory.

Example:

S4PM5.18.00 Installation and Configuration Guide: 6. The Stringmaker Host
Configuration File

1/26/2007 39

$mode = "TS2";
$ingest_root = "/vol1/$mode/s4ins";

6.9 $data_root

This parameter is OPTIONAL.

The $data_root parameter is the root under which all data being managed by S4PM
reside. This includes data brought in from external sources (e.g. ECS) and data produced
within S4PM prior to being exported or distributed. Below $data_root, Stringmaker will
make subdirectories for each data type used in the string. The default is to put the data
root in a directory under the station root (defined by $s4pm_root) along side the station
directories and named DATA. If $data_root is set, a convenient symbolic link will be
provided to this directory in the station root directory named DATA.

Example:

$data_root = '/vol3/data/s4pm/DATA';

6.10 $pan_dir

This parameter is OPTIONAL.

The $pan_dir parameter explicitly sets the PAN directory. This PAN directory is the
directory into which Product Acceptance Notifications (PANs) are deposited after data
from S4PM has been successfully exported to an external archive such as ECS or S4PA.
This same directory is also the Receive PAN station directory and the station scripts and
configuration files will be placed into this directory.

By default, the PAN directory is the receive_pan station directory under the station root
directory (defined by the $s4pm_root parameter) and it sits along side the other station
directories.

If $ingest_root is set (Section 6.8), the PAN directory defaults to a subdirectory under
$ingest_root. The $pan_dir parameter overrides either default.

6.11 $pdr_dir

This parameter is OPTIONAL.

The $pdr_dir parameter explicitly sets the PDR directory. This PDR directory is the
directory into which Product Delivery Records (PDRs) are placed by S4PM for data to be
exported to external archives such as ECS or S4PA. The assumption is that the external
archive polls the PDR directory for new PDRs. The PDR files contain the locations of the

S4PM5.18.00 Installation and Configuration Guide: 6. The Stringmaker Host
Configuration File

1/26/2007 40

data and metadata files which, presumably, the external archive can then pull over (e.g.
via ftp).

By default, the PDR is placed directory under the station root directory (defined by the
$s4pm_root parameter) and it sits along side the other station directories.

If $ingest_root is set (Section 6.8), the PDR directory defaults to a subdirectory under
$ingest_root. The $pdr_dir parameter overrides either default.

6.12 $ecs_root

This parameter is OPTIONAL.

For ECS integration, the $ecs_root parameter is the root directory where the ECS custom
code is installed, in particular, the SCLI, DCLI, and (by default) the ECS Toolkit.

If you are not using ECS, this parameter need not be set.

Example:

$mode = "TS2";
$ecs_root = "/usr/ecs/$mode/CUSTOM";

6.13 $toolkit_root

This parameter is OPTIONAL.

The $toolkit_parameter defines the location of the ECS Toolkit. The default location is
$ecs_root/TOOLKIT/toolkit. If none of the algorithms running within S4PM use the ECS
Toolkit, this parameter need not be set.

If the $ecs_root parameter is set, the location of the ECS Toolkit can be inferred
assuming a typical ECS installation. If, however, $ecs_root is not set (e.g. you are not
using ECS) or you are using ECS but with a non standard installation of the Toolkit, the
$toolkit_root parameter must be set since its location cannot be inferred.

Example:

$mode = "TS2";
$toolkit_root = "/tools/gdaac/$mode/sdp_toolkit";

S4PM5.18.00 Installation and Configuration Guide: 6. The Stringmaker Host
Configuration File

1/26/2007 41

6.14 $local_s4pa_ftp_root

This parameter is OPTIONAL.

The $local_s4pa_ftp_root is only used under these conditions:

1. Data is coming into S4PM from S4PA and
2. The S4PA resides on the same box as S4PM or the data in S4PA can be seen

locally.

If both of the conditions above are met, the $local_s4pa_ftp_root is required and it needs
to be set to the root directory in S4PA where the data reside. It is used by S4PM to create
symbolic links in the input disk pool to those data in S4PA.

If Data Notifications indicate that the S4PA instance is on a remote machine, this
parameter is ignored. Instead, the data are transferred over to the local machine.

6.15 Sample Stringmaker Host Configuration File

$domain = 'gsfcb.ecs.nasa.gov';
$host = ‘g0spg10’;
$mode = "TS2";
$bindir = "/tools/gdaac/$mode/bin";
$cfgdir = "/tools/gdaac/$mode/cfg";
$s4pm_root = "/vol1/$mode/s4pm";
$ingest_root = "/vol1/$mode/s4ins";
$ecs_root = "/usr/ecs/$mode/CUSTOM";

Figure 6-1. A sample minimal Stringmaker host configuration file.

S4PM5.18.00 Installation and Configuration Guide: 7. The Stringmaker Data Types
Configuration File

1/26/2007 42

7. The Stringmaker Data Types Configuration File

The Stringmaker data types configuration file contains information about all data types
used in all strings. When a data type is specified in an algorithm configuration file (see
Section 10), either as an input or output, Stringmaker assumes that information about this
data type is specified in this file. An error is produced if a referenced data type is not in
this file.

The following is a list of all parameters in the Stringmaker Data Types configuration file:

Parameter Section Mandatory or Optional
%all_datatype_max_sizes 7.2 Mandatory
%all_datatype_versions 7.3 Mandatory
%ragged_file_trap 7.4 Optional
%register_data_offsets 7.5 Optional
@all_qc_datatypes 7.6 Optional
%qc_output 7.7 Optional
%non_hdf_datatypes 7.8 Optional
%skip_checksum_datatypes 7.9 Optional
%data_file_qa 7.10 Optional
$s4pm_filename_pattern 7.11 Optional
%browse_map 7.12 Optional
%s4pa_data_map 7.13 Optional

Table 7-1. Parameters in the Stringmaker Data Types configuration file.

7.1 File Name

The file name for the Stringmaker data types configuration file is:

s4pm_stringmaker_datatypes.cfg

7.2 %all_datatype_max_sizes

This parameter is MANDATORY.

The %all_datatype_max_sizes parameter is a hash containing maximum sizes in bytes of
the corresponding data types listed as the hash keys. For files whose sizes may be highly
variable, choose a reasonable maximum. It may be convenient to set up separate hashes
first (e.g. one for each mission or S4PM string) and then combine them into the
%all_datatype_max_sizes at the end.

S4PM5.18.00 Installation and Configuration Guide: 7. The Stringmaker Data Types
Configuration File

1/26/2007 43

For example:

%modis_max_sizes = (
 'MOD000' => 352_000_000,
 'MOD01' => 575_000_000,
 'MOD03' => 63_000_000,
);
%airs_max_sizes = (
 'AIRABQAP' => 2_000_000,
 'PMCO_HK' => 2_000_000,
 'PREPQCH' => 75_000_000,
);
%all_datatype_max_sizes = (%modis_max_sizes, %airs_max_sizes);

7.3 %all_datatype_versions

This parameter is MANDATORY.

For each data type listed in the %all_datatype_max_sizes hash (Section 7.2), the
%all_datatype_versions parameter hash lists data type versions. There must be an entry in
this hash for every data type listed in the %all_datatype_max_sizes hash. Furthermore,
data type versions specified in algorithm configuration files must match those set in this
configuration file.

Example:

map { $all_datatype_versions{$_} = '001'} keys
%all_datatype_max_sizes;
foreach my $dt (keys %all_datatype_max_sizes) {
 if ($dt =~ /^MOD/ and $dt ne 'MOD000') {
 $all_datatype_versions{$dt} = '005';
 } elsif ($dt =~ /^MYD/ and $dt ne 'MODPML0') {
 $all_datatype_versions{$dt} = '004';
 } elsif ($dt =~ /^AI/) {
 $all_datatype_versions{$dt} = '002';
 }
};

7.4 %ragged_file_trap

This parameter is OPTIONAL.

The %ragged_file_trap parameter is a hash listing those data types that should be trapped
if the temporal metadata do not align on the hour boundary. Generally, these are Level 0
data. When such data types are brought into S4PM, they will fail in the Register Data
station. Failure handlers are provided to either bypass the trap or have the offending data
purged. Hash values must be set to non-zero to enable the trap or zero to disable the trap.

S4PM5.18.00 Installation and Configuration Guide: 7. The Stringmaker Data Types
Configuration File

1/26/2007 44

Data types not listed at all in this hash are equivalent to setting their values to zero. All
data types listed in this hash must appear in the %all_datatype_max_sizes hash.

Example:

%ragged_file_trap = map {($_, 1)} (
 'MOD000',
 'MODPML0',
 'AM1ANC',
);

7.5 %register_data_offsets

This parameter is OPTIONAL.

The %register_data_offsets parameter is a hash that lists temporal offsets to be applied to
data arriving in the Register Data station. The default is to apply no offset.

By default, S4PM names files coming in through Register Data according to the start
time as indicated in the accompanying metadata file. If the metadata only lists a single
date/time, S4PM uses this value in the file name. Sometimes, however, it is useful to
apply an offset to the time as indicated in the S4PM file name, for example to facilitate
easier production rules (particularly with model data). This is the primary use for
applying offsets.

Example:

%register_data_offsets = (
 'OZ_DAILY' => [-12 * 3600, +12 * 3600],
 'SEA_ICE' => [-12 * 3600, +12 * 3600],
);

7.6 @all_qc_datatypes

This parameter is OPTIONAL, but MANDATORY is %qc_output (Section 7.7) is set.

The @all_qc_datatypes parameter is an array that lists all data types where quality
control (QC) checking should be done. The particular QC checks done are set in the
%qc_output hash (next). For simplicity, one may set this array to all data types defined in
this file via:

@all_qc_datatypes = keys %all_datatype_max_sizes;

S4PM5.18.00 Installation and Configuration Guide: 7. The Stringmaker Data Types
Configuration File

1/26/2007 45

7.7 %qc_output

This parameter is OPTIONAL.

The %qc_output parameter is a hash describing the types of QC checking to be
performed on data types produced in S4PM (those specified in the @all_qc_datatypes
array above; see Section 7.6). Standard QC checking includes s4pm_is_hdf.pl which
verifies that an HDF output can be opened as an HDF file (for HDF files only) and
s4pm_checksum.pl that computes a checksum for each output and includes that
checksum in the output PDR (if $use_checksums is enabled in the <string>.cfg file).
Other QC checks may be added. For example, checking file sizes for valid ranges.

The hash keys are data types and the hash values are lists consisting of one or more items
in the form:

<bbbbb> <script_command>

where <bbbbb> are 5 one-bit settings that have the following meaning:

• Bit 1 - Apply QC check to metadata file
• Bit 2 - Apply QC check to data file
• Bit 3 - Block export if QC fails
• Bit 4 - Block from Register Local Data if QC fails
• Bit 5 - Fatal (fail the algorithm)

and <script> is the QC script or command to run.

An illustration is:

%qc_output = (
 'MOD021KM' => [
 '11111 /tools/gdaac/TS2/bin/s4pm_checksum.pl'
 '11110 /tools/gdaac/TS2/bin/s4pm_check_size.pl -f
../SizesModis.cfg',
],
 'MOD01' => [
 '11110 /tools/gdaac/TS2/bin/s4pm_checksum.pl'
 '11110 /tools/gdaac/TS2/bin/s4pm_check_size.pl -f
../SizesModis.cfg',
],
 'AM1EPHN0' => [
 '11111 /tools/gdaac/TS2/bin/s4pm_checksum.pl'

Note: The $has_qc parameter in the Stringmaker string
configuration file (see Table 9-1) controls whether or not
QC checking is turned on, regardless of what is in the
@all_qc_datatypes array.

S4PM5.18.00 Installation and Configuration Guide: 7. The Stringmaker Data Types
Configuration File

1/26/2007 46

],
 'MOD35_L2' => [
 '11111 /tools/gdaac/TS2/bin/s4pm_checksum.pl',
],
);

In the above example, for MOD021KM above, the QC checks are applied to both the
data file and the associated metadata files (bits 1 and 2). If a MOD021KM file fails the
data size checking, it is blocked from export (bit 3), blocked from going to the Register
Local Data station (this effectively blocks it from any upstream processing), bit 4, but
because bit 5 is set to zero, the algorithm will not fail in Run Algorithm, although a
message will be written to the log file.

7.8 %non_hdf_datatypes

This parameter is OPTIONAL, but MANDTORY is enabling QC on non-HDF data files.

The %non_hdf_datatypes parameter hash is used for marking data types as non-HDF. By
default, S4PM assumes that all data types are in HDF format. HDF validation is skipped
if the data type is listed in this hash. Hash values must be set to non-zero for data types
that are non-HDF and to zero (or not set) if the data types are HDF.

Example:

%non_hdf_datatypes = map {($_, 1)} (
 'MOD02SSN',
 'MYD02SSN',
);

7.9 %skip_checksum_datatypes

This parameter is OPTIONAL.

If check summing is turned on in a particular string (via $use_checksums in the
Stringmaker string configuration file), this hash lists data types where check summing
should not be done. Hash keys are the data types to skip and hash values should simply
be set to non-zero to skip check summing or to zero (or not set) to not skip check
summing.

Example:

%skip_checksum_datatypes = map {($_, 1)} (
 'MOD35_QC',
 'MYD35_QC',
 'MOD07_QC',
 'MYD07_QC',
 'MYD021QA',
);

S4PM5.18.00 Installation and Configuration Guide: 7. The Stringmaker Data Types
Configuration File

1/26/2007 47

7.10 %data_file_qa

This parameter is OPTIONAL.

The %data_file_qa parameter is a hash that maps data types to commands to run on those
data files to assess quality in the Register Data station. Commands to run are arbitrary
and can include scripts, but they must return 0 if the data file passes QA and non-zero
otherwise. This QA is run in the Register Data station. A data file that fails QA causes the
job in Register Data to fail. The 'Bypass QA' failure handler allows a QA failure to be
bypassed; 'Purge Bad-QA Data' allows the offending data to be purged. Other failure
handlers for particular QA failures can easily be added.

The distinction between QA here and QC discussed in Section 7.7 is that QA is
performed on files coming into the Register Data station while QC is performed on files
produced in the Run Algorithm station.

Example:

%data_file_qa = (
 'AM1ATTN0' => 's4pm_attitude_check.pl -t .0002',
 'NISE' => 's4pm_nise_check.pl',
);

7.11 $s4pm_filename_pattern

This parameter is OPTIONAL.

The $s4pm_filename_pattern parameter is the pattern used by S4PM for constructing file
names used internally by S4PM. The pattern is a string containing format specifiers
describing how a file name in S4PM is to be built from the data type name and version,
the data time, and the production date and time. The format specifiers are based on those
used by the UNIX ‘date’ command format option.

If using this optional parameter, the environment variable S4PM_CONFIGDIR must be
set to the location of the Stringmaker configuration files. This is the same as the setting of
$stringmaker_root in the Stringmaker global configuration file. If S4PM_CONFIGDIR is
not set or if $s4pm_filename_pattern is not set, the file name pattern assumed is the
standard S4PM file name pattern.

Format specifiers come in two types, those that begin with the ^ character and those that
begin with the ~ character. Format specifiers that begin with the ^ character refer to data
time. Format specifiers that begin with the ~ character refer to the current time (same as
would be returned via the 'date' command on the machine in which this is running).

S4PM5.18.00 Installation and Configuration Guide: 7. The Stringmaker Data Types
Configuration File

1/26/2007 48

Format Specifiers Description

^E Data type name
^V Data type version

^y or ~y Two-digit year
^Y or ~Y Four-digit year
^d or ~d Day of month (00-31)

^m or ~m Decimal month (00-12)
^b or ~b Abbreviated month name (Jan, Feb, etc.)
^B or ~B Long month name (January, February, etc.)
^j or ~j Day of year (000-366)

^H or ~H Hours on 24-hour clock (00-23)
^M or ~M Minutes (00-59)
^S or ~S Seconds (00-59)
^u or ~u Decimal day of week (1-7) with 1=Monday

~N Current time in form: YYYYjjjHHMMSS, a
shorthand for ~Y~j~H~M~S.

Useful for making file names unique.

Table 7-2. Allowable format specifiers for forming a file name pattern with the
$s4pm_filename_pattern parameter. The specifiers starting with the ^ character refer to the data

time; those with the ~ character refer to the production (or machine) time.

In addition to format specifiers, the pattern may contain other characters, words or some
punctuation (-, :, _). These become fixed in the file names built by S4PM.

7.11.1 File Name Pattern Restrictions

There are certain restrictions when setting up your own file name pattern in S4PM;

1. All file name patterns must contain the data type name and data type version.
2. The data date must be included in the file name pattern (even if the time is not).

Note that as of release 5.12.0, there is no requirement that file name patterns contain at
least some production data/time specifiers.

Note: When using the $s4pm_filename_pattern parameter, you
MUST also set the environment variable
S4PM_CONFIGDIR to the location of the Stringmaker
directory which MUST be the same as the setting for
$stringmaker_root in the Stringmaker global configuration
file. If S4PM_CONFIGDIR is not set or set to a non-
existent directory, S4PM will revert to assuming the
standard S4PM file name pattern.

S4PM5.18.00 Installation and Configuration Guide: 7. The Stringmaker Data Types
Configuration File

1/26/2007 49

7.11.2 Performance Impacts

File name patterns that do not include the production data/time specifiers (those
beginning with a ~ character) allow for better performance in the Find Data station when
run under load. The reason is that without ~ specifiers, predicted file names are fully
specified, that is, there is no pattern. When fully specified, Find Data can look perform a
simple existence test to see if the file is there or not. On the other hand, when ~
specifiers are included, predicted file names are not fully specified and therefore, Find
Data must do a glob instead. A ‘glob’ involves looking for all files that match some file
name pattern such as AIRIBRAD.A2001288.0306.* which can result in a performance
penalty when there are many files in the directory. Under light load, this performance
penalty may not be noticeable.

The downside of not including ~ specifiers in the file name pattern is that the ~ specifiers
all but guarantee that file names will be unique. A future release of S4PM will ensure that
this is the case.

7.11.3 Default File Name Pattern

The default value for $s4pm_filename_pattern is:

$s4pm_filename_pattern = "^E.A^Y^j.^H^M.^V.~N.hdf";

which produces the standard S4PM file name, for example:

MOD01.A2005067.0340.005.2005167124454.hdf

Here's another example:

$s4pm_filename_pattern = "^H^M-^Y^j.~H~M~S.^E.^V.~Y~j.dat";

which results in file names like:

0735-2000270.142731.MOD01.005.2005167.dat

7.12 %browse_map

This parameter is OPTIONAL, but MANDATORY for algorithms that use the ECS
Toolkit and create browse images associated with one or more output products that are to
be inserted into the ECS archive.

The %browse_map parameter is a hash that maps algorithm to an anonymous hash that,
in turn, maps PCF product LUNs to browse image LUNs. When the products are inserted
into the ECS archive, the proper links will be created so that the browse images are
properly associated within the ECS Science Data Server.

S4PM5.18.00 Installation and Configuration Guide: 7. The Stringmaker Data Types
Configuration File

1/26/2007 50

For example:

$pge02_map = { 700000 => 99201, 700001 => 99201, 700002 => 99201 };
%browse_map = (
 ‘MoPGE02’ => $pge02_map,
 ‘MyPGE02’ => $pge02_map,
);

In the above example, the anonymous hash $pge02_map is first defined to associate
products in LUNs 700000, 700001, and 700002 with a single browse image in LUN
99201. Next, the %browse_map hash associates the algorithms MoPGE02 and MyPGE02
with that same anonymous hash (it is assumed that both algorithms use the same LUN
assignments).

7.13 %s4pa_data_map

The %s4pa_data_map parameter is only required to be set if output data are exported to a
S4PA or input data to the string will be from S4PA via the Compose Data Request tool. It
is also used when data feeding the string comes from any data source where PDRs for the
data are provided. Only strings that solely interoperate with ECS should ignore this
parameter.

For input data, the %s4pa_data_map parameter is a hash that describes on what S4PA
systems data reside (there can be more than one) and it provides information about the
directory and file names of those data. For output data, the hash describes the location
where PDR files for output products are to be placed. All data types that are exported to a
S4PA or coming into S4PM from S4PA via the Compose Data Request tool need to be
specified in this hash.

The primary hash keys are data type names and the secondary hash keys are data type
versions. Both data type names and versions must be set in the
%all_datatypes_max_sizes and %all_datatype_versions hashes, respectively. The hash
values are the attributes described below in two sections. The top section lists the
attributes that apply to data types that are inputs to the S4PM string; the bottom section
lists the attributes that apply to data types that are outputs from the S4PM string:

S4PM5.18.00 Installation and Configuration Guide: 7. The Stringmaker Data Types
Configuration File

1/26/2007 51

Attributes For Inputs to S4PM

Attribute Description Mandatory or Optional
ftphost Machine name of machine

hosting the S4PA and FTP
Mandatory if S4PA is
remote. If the S4PA is
local, then this parameter
needs to be omitted. Note:
If you include this
parameter, you are forcing
the use of FTP, even if in
fact the S4PA is local.

dirpat Directory pathname pattern. A
pattern using the same
specifiers as are available for
setting the
$s4pm_filename_pattern
parameter (see Section 7.11).

Mandatory.

filepat File name pattern using the
same specifiers as are available
for setting the
$s4pm_filename_pattern
parameter (see Section 7.11).

Mandatory.

filesize File sizes in megabytes (MB) of
the data type. If S4PA is local,
this parameter is ignored and
instead the actual file size is
used.

Optional, but mandatory if
S4PA is remote.

length Temporal coverage of the data
type in seconds. If not specified,
it is assumed that this
information is available in XML
metadata files (or can be
computed from them).

Optional, but mandatory if
there are no metadata files,
the metadata files are in
ODL format, or if the XML
metadata files do not
contain this information.

Attributes For Outputs From S4PM
Attribute Description Mandatory or Optional

pdrdir Full path of the directory in
which to place output PDRs

Mandatory

Id Unique ID comprised of a short
character string of uppercase
letters. Prohibited strings for this
are ‘DEFAULT’, ‘EZ’, and ‘PH’,
and ‘EPD’.

Mandatory

Table 7-3. Hash attributes in the %s4pa_data_map parameter.

S4PM5.18.00 Installation and Configuration Guide: 7. The Stringmaker Data Types
Configuration File

1/26/2007 52

For example:

%s4pa_data_map = (
 ‘AM1ATTNF’ => { # Input from S4PA on g0dpp92
 ‘2’ => {
 ‘ftphost’ => ‘g0dpp92’,
 ‘dirpat’ => ‘OTHR/^E.00^V/^Y.^m.^d’,
 ‘filepat’ => ‘^E.P^Y^j.^H^M.00^V.’,
 ‘filesize’ => 0.43,
 ‘length’ = 7200,
 },
 },
‘MOD021KM’ => { # Input from S4PA on g0dpp71
 ‘4’ => {
 ‘ftphost’ => ‘g0dpp71’,
 ‘dirpat’ => ‘OTHR/^E.00^V/^Y.^m.^d’,
 ‘filepat’ => ‘^E.P^Y^j.^H^M.00^V.’,
 ‘filesize’ => 143.2,
 ‘length’ = 300,
 },
 },
‘MOD02SSH’ => { # Output going to MODIS via PDR
 ‘4’ => {
 ‘pdrdir’ => ‘/ftp/data/s4pm/pdr’,
 ‘id’ => ‘MODIS’,
 },
 },

);

7.14 Sample Stringmaker Data Types Configuration File

%modis_max_sizes = (
 'MOD000' => 352_000_000,
 'MOD01' => 575_000_000,
 'MOD03' => 63_000_000,
);
%airs_max_sizes = (
 'AIRABQAP' => 2_000_000,
 'PMCO_HK' => 2_000_000,
 'PREPQCH' => 75_000_000,
);
%all_datatype_max_sizes = (%modis_max_sizes, %airs_max_sizes);
map { $all_datatype_versions{$_} = '001'} keys %all_datatype_max_sizes;

Figure 7-1. A sample minimal Stringmaker data types configuration file for ECS .

S4PM5.18.00 Installation and Configuration Guide: 8. The Stringmaker Static
Configuration File

1/26/2007 53

8. The Stringmaker Static Configuration File

The Stringmaker static configuration file should not need to be modified (as its name
implies). This section will, however, discuss some of the details of this configuration file
in case you do find a reason to modify it.

8.1 File Name

The file name for the Stringmaker static configuration file is:

s4pm_stringmaker_static.cfg

The Stringmaker string configuration file specifies how to set up some of the S4PM
stations. Only those stations that exist for any S4PM configuration are specified in this
file. In some cases, some aspects of a station may be specified here whereas the rest is
specified in the s4pm_stringmaker_derived.cfg file (discussed later). Since this
configuration file is read in before any of the Stringmaker string configuration file is
read, anything having to do with particular data types or algorithms are not known to
Stringmaker at this time. Therefore, only those stations that can be set up without this
information (at least in part) are set up here.

The Stringmaker string configuration file is broken up into sections for each station that
gets specified. Within each station section, many aspects of the station are described. The
contents of the station station.cfg files are set in a very intuitive manner that can be seen
below. In addition, mechanisms for specifying the symbolic links that need to exist in
each station as well as other aspects are shown as well.

The list of mechanisms shown below is not exhaustive, but only represents a sampling of
the most commonly used ones. In addition, the same mechanisms described below for
setting up stations are used in the Stringmaker derived configuration file. Some of the
examples, in fact, were taken from the Stringmaker derived configuration file.

8.2 %stations

Most of the information defined in the Stringmaker static (and derived) configuration
files is contained in the %stations hash. This hash contains a number of attributes that
define particular aspects of each station. Attribute names are either literals or names of
Perl variables. In either case, the way in which attribute X is set to value Y for station
Station is as follows:

$stations{‘Station’}{‘X’}

S4PM5.18.00 Installation and Configuration Guide: 8. The Stringmaker Static
Configuration File

1/26/2007 54

In the sections below, the various attributes of the %stations hash are discussed.

8.2.1 $cfg_station_name

The $cfg_station_name attribute of the %stations hash defines the station name for the
station. Stringmaker will use this value for the $cfg_station_name parameter in the
station.cfg file that it builds for this station.

Example:

$stations{'register_data'}{'$cfg_station_name'} = 'Register
Data';

8.2.2 $cfg_disable

The $cfg_disable parameter defines the value of the $cfg_disable parameter in the
station.cfg file for the particular station. If $cfg_disable is set to non-zero, Stationmaster
will consider the station disabled and non-participating in the string. If set to 0 or unset,
Stationmaster will consider the station enabled.

Example:

$stations{'register_local_data'}{'$cfg_disable'} = 0;

8.2.3 exec_symlinks

The exec_symlinks attribute is set to a list of executables that need to exist as symbolic
links in the station. Symbolic links are linked to the location where the S4PM binaries
have been installed (this directory is set by the $bindir parameter in the Stringmaker
global configuration file; see Section 5).

Example:

$stations{'prepare_run'}{'exec_symlinks'} =
['s4pm_prepare_run.pl',
's4pm_prepare_run_resync.pl'];

8.2.4 misc_symlinks

The misc_symlinks attribute is set to a hash of miscellaneous symbolic links that need to
exist in the station (other than those for executables covered by the exec_symlinks
attribute). Unlike with executable symbolic links (Section 8.2.3), the link as well as what
it is linking too need to be specified.

Example:

$stations{'repeat_daily'}{'misc_symlinks'} = {
 's4pm_allocate_disk.db' =>
'../allocate_disk/s4pm_allocate_disk.db',
 's4pm_allocate_disk.cfg' =>

S4PM5.18.00 Installation and Configuration Guide: 8. The Stringmaker Static
Configuration File

1/26/2007 55

'../allocate_disk/s4pm_allocate_disk.cfg'
};

8.2.5 $cfg_max_children

The $cfg_max_children parameter sets the maximum number of jobs (children) that can
be run in the station at a time. The default, if not set here, is 5.

For example:

$stations{'repeat_daily'}{'$cfg_max_children'} = 8;

8.2.6 %cfg_commands

The %cfg_commands parameter is a hash that specifies the commands that are to be run
in a station with the associated work order types. It is what the %cfg_commands
parameter is set to in the station.cfg files.

For example:

$stations{'sweep_data'}{'%cfg_commands'} = {
 'SWEEP' => '../s4pm_sweep_data.pl -config
../s4pm_allocate_disk.cfg -db ../s4pm_allocate_disk.db',
};

8.2.7 %cfg_downstream

The %cfg_downstream parameter is a hash that sets the stations to which output work
orders are directed. It is what the %cfg_downstream parameter is set to in the station.cfg
files.

Example:

$stations{'repeat_hourly'}{'%cfg_downstream'} = {
 'REPEAT_CLEAN_FILES' => ['repeat_hourly'],
 'ROLLUP_RUSAGE' => ['repeat_hourly'],
 'UPDATE' => ['track_data'],
};

8.2.8 %cfg_interfaces

The %cfg_interfaces parameter is a hash that sets the %cfg_interfaces parameter in the
station.cfg file. The %cfg_interfaces hash maps button names (which appear in the S4PM
Station Monitor window for a particular station or by right-clicking on the station name
in the S4PM Monitor) to actions to be carried out. Typically, these are used for bringing
up additional window applications (hence the name), but this is not required. The "thing"
run can be any command.

S4PM5.18.00 Installation and Configuration Guide: 8. The Stringmaker Static
Configuration File

1/26/2007 56

For example:

$stations{'sweep_data'}{'%cfg_interfaces'} = {
 'Restart All Failed Jobs' => 's4p_restart_all_jobs.pl',
};

8.2.9 %cfg_failure_handlers

The %cfg_failure_handlers parameter is a hash that sets the %cfg_failure_handlers
parameter in the station.cfg file. The %cfg_failure_handlers maps failure handler names
to scripts or commands to run when invoked. Such failure handlers are only available via
the S4PM Job Monitor window when a job fails (access it by clicking on the red failed
job box).

For example:

$stations{'receive_dn'}{'%cfg_failure_handlers'} = {
 'Remove Job' => 'remove_job.pl',
};

8.2.10 %cfg_manual_overrides

The %cfg_manual_overrides parameter is a hash that sets the %cfg_manual_overrides
parameter in the station.cfg file. The %cfg_manual_overrides maps button names to tasks
that carried out in a running job directory. The tasks can be scripts or commands.

For example:

$stations{'select_data'}{'%cfg_manual_overrides'} = {
 'Release Job Now' => 'touch RELEASE_JOB_NOW',
 'Modify Timer' => 'touch MODIFY_TIMER',
 'Modify Threshold' => 'touch MODIFY_THRESHOLD',
};

S4PM 5.18.0 Installation and Configuration Guide: 9. The Stringmaker String
Configuration File

1/26/2007 57

9. The Stringmaker String Configuration File

The Stringmaker string configuration file is unique for each S4PM string. The string
configuration file is the configuration file where the algorithms to run, along with their
versions, and profiles are set. It is also where disk pools are sized. It is based upon the
algorithms selected in this configuration file that Stringmaker knows what algorithm-
specific configuration files to later read in.

The following is a list of all parameters in the Stringmaker String configuration file:

Parameter Section Mandatory or Optional
$string_id 9.2 Mandatory
$data_source 9.3 Mandatory
$data_source_longname 9.4 Optional
$instance 9.5 Mandatory
$algorithm_root 9.6 Optional
@run_sorted_algorithms 9.7 Mandatory
@display_sorted_algorithms 9.8 Optional
%algorithm_versions 9.9 Mandatory
%algorithm_profiles 0 Mandatory
%pool_capacity 9.11 Mandatory
$data_expiration_max_hours 9.13 Optional
%proxy_esdts 9.15 Optional
$smart_polling,
@smart_polling_intervals,
@smart_polling_freqs

9.16 Optional

$has_qc 9.17 Optional
$export_ph 9.18 Optional
$use_checksum 9.19 Optional
$has_autorequest 9.20 Optional
$on_demand 9.21 Optional
$dme, $sub_request_email,
$pickup_dir

9.22 Optional

$data_source_polling,
$data_source_polling_dir

9.23 Optional

@datapool_insert_datatypes,
$datapool_staging_dir

9.24 Optional

$input_symlink_root,
$input_symlink_expiration_file

9.25 Optional

$scli_host 9.26 Optional
%ordering_tool_parms 9.27 Optional
$smart_allocation 9.28 Optional
$external_archive_system 9.29 Optional
$use_datahandles 9.30 Optional
$pdr_polling_parms 9.31 Optional
%commands_addenda 9.32 Optional

Table 9-1. Parameters in the Stringmaker String configuration file.

S4PM 5.18.0 Installation and Configuration Guide: 9. The Stringmaker String
Configuration File

1/26/2007 58

9.1 File Name

There is no requirement for the actual file name although the recommendation is to name
the file for the $string_id parameter contained therein (see Section 9.2).

9.2 $string_id

This parameter is MANDATORY.

The $string_id parameter is an identifier for the string, used in both the Ingest polling
configuration and the USERSTRING for data requests. This is also the work order
pattern for work order in the Receive PAN station.

Example:

$stringid = "S4PM10_MO_FW";

9.3 $data_source

This parameter is MANDATORY.

The $data_source parameter is used to name the subdirectory under $s4pm_root (set in
the host or global configuration file) for this string. Thus, it serves as another identifier
for the string.

Example:

$data_source = 'terra';

9.4 $data_source_longname

This parameter is OPTIONAL.

The $data_source_longname parameter is a longer version of $data_source, a string
describing the data source corresponding to $data_source (Section 9.3). It is used in the
S4PM Monitor window title bar. If not specified, it is set to $data_source.

Example:

$data_source_longname = "MODIS Terra";

S4PM 5.18.0 Installation and Configuration Guide: 9. The Stringmaker String
Configuration File

1/26/2007 59

9.5 $instance

This parameter is OPTIONAL.

The $instance parameter represents a subdivision under $data_source. Multiple strings
may be created with the same $data_source, but different values of $instance. If $instance
is set, the actual S4PM string is installed in this directory:

$s4pm_root/$data_source/$instance

rather than in this directory:

$s4pm_root/$data_source

Originally, instance was interpreted as a "gear" that enabled a data source ($data_source)
to be subdivided up into forward processing and reprocessing (where gear would be set to
'forward' or 'reprocessing'). Now, $instance is a more generic interpretation in that it
represents any sub flavor of a data source including simple forward and reprocessing.

Example:

$instance = "reprocessing";

9.6 $algorithm_root

This parameter is OPTIONAL.

The $algorithm_root parameter specifies the root directory under which algorithms for
this string are installed. Below this root, S4PM assumes that there is a subdirectory for
each algorithm that has the name of the algorithm. Below each algorithm directory,
S4PM assumes there is a version subdirectory that has the same name as the version.

For example:

$algorithm_root/MoPGE01/4.5.2/;

If the algorithm root directory is global across all strings, this variable may be set in the
host or global configuration file.

If not set, the default is:

$s4pm_root/$data_source/pge

Example:

$algorithm_root = "/home/s4pmuser/algorithms";

S4PM 5.18.0 Installation and Configuration Guide: 9. The Stringmaker String
Configuration File

1/26/2007 60

9.7 @run_sorted_algorithms

This parameter is MANDATORY.

The @run_sorted_algorithms parameter is an array that sets the algorithms to run in this
string as well as their run order in the Run Algorithm station such that the first algorithm
in the list will be the one to run first if there is a choice. Stationmaster by default selects
the next job to run (when a slot is available) by simple shell order.

In general, to avoid algorithm starvation, it is best to give the most upstream algorithms
the highest order of preference.

Example:

@run_sorted_algorithms =
('GdPGE02B','MoPGE03','MoPGE02','MoPGE01');

9.8 @display_sorted_algorithms

This parameter is OPTIONAL.

While @run_sorted_algorithms is for sorting the priority of jobs for Stationmaster, the
@display_sorted_algorithms parameter sets the order the jobs should be displayed in the
S4PM Monitor. The default is the reverse of the order in the @run_sorted_algorithms
array.

Example:

@display_sorted_algorithms =
('GdPGE02B','MoPGE03','MoPGE02','MoPGE01');

9.9 %algorithm_versions

This parameter is MANDATORY.

The %algorithm_versions parameter is a hash that lists the algorithm versions to run in
this string. The hash keys are algorithm names (assumed to be listed in
@run_sorted_algorithms; Section 9.7) and the hash values are their versions. Algorithms
are assumed to be located in the directory specified by $algorithm_root in the host
configuration file or in the default location.

S4PM 5.18.0 Installation and Configuration Guide: 9. The Stringmaker String
Configuration File

1/26/2007 61

Example:

%algorithm_versions = (
 'MoPGE01' => '4.1.12',
 'MoPGE71' => '4.0.2',
 'MoPGE02' => '4.3.0',
 'MoPGE03' => '4.3.0',
);

9.10 %algorithm_profiles

This parameter is MANDATORY.

The %algorithm_profiles parameter is a hash that lists the algorithm profiles to be run in
this string. The hash keys are algorithm names (assumed to be listed in
@run_sorted_algorithms; see Section 9.7) and the hash values are their profiles (profiles
are a subdivision of version). Algorithms are assumed to be located in the directory
specified by $algorithm_root in the host configuration file or in the default location.

Example:

%algorithm_profiles = (
 'MoPGE01' => 'RPROC',
 'MoPGE71' => 'RPROC',
 'MoPGE02' => 'RPROC',
 'MoPGE03' => 'RPROC',
);

9.11 %pool_capacity

This parameter is MANDATORY.

Note: Only those algorithms listed in the
@run_sorted_algorithms array are actually run in this
string regardless of what is in the %algorithm_versions or
%algorithm_profiles (Section 0) hash.

Note: The profile set in this hash must match the profile portion
of the algorithm configuration file name.

Note: Also remember that only those algorithms listed in the

@run_sorted_algorithms array are actually run in this
string regardless of what is in the %algorithm_profiles or
%algorithm_versions (Section 9.9) hash.

S4PM 5.18.0 Installation and Configuration Guide: 9. The Stringmaker String
Configuration File

1/26/2007 62

The %pool_capacity parameter is a hash that determines the storage capacity of the disk
pools that are set up for data. The hash keys are data types and the hash values are the
maximum number of files (not size in bytes) for which the capacity must be set. Using
the maximum number of files provided here and the maximum file size in bytes for each
data type specified in the s4pm_stringmaker_datatypes.cfg file, Stringmaker will
determine the sizes of each disk pool in bytes.

All data types (input and output) to be used in a string need to be specified here. This
includes data types such as FAILPGE and PH.

Example:

%pool_capacity = (
 'MOD01' => 100,
 'MOD03' => 170,
 'MOD021KM' => 150,
);

9.12 $config_files{'repeat_daily/s4pm_delete_expired_data.cfg'}

{'%AgeLimits'}

This construct is OPTIONAL, but if not used, the parameter $data_expiration_max_hours
(Section 9.13) becomes MANDATORY.

This construct is used to specify the maximum age of data files beyond which S4PM will
delete them. Normally, S4PM deletes data when it knows that nothing else will need to
access it. S4PM keeps track of the maximum number of uses each data file will have and
it decrements the number of outstanding uses each time the file is used. When the number
of outstanding uses reaches zero, the file is deleted. Sometimes, however, a file may not
get used the number of times anticipated. That is where this hash comes in. The hash keys
are data types and the hash values are the number of hours beyond which to delete the
data regardless of any outstanding uses.

Data types not specified in this hash risk building up over time and, potentially, filling up
its disk pool beyond capacity. When this happens, processing in S4PM will likely grind
to a halt unless manual intervention is taken.

Example:

S4PM 5.18.0 Installation and Configuration Guide: 9. The Stringmaker String
Configuration File

1/26/2007 63

$config_files{'repeat_daily/s4pm_delete_expired_data.cfg'}{'%AgeL
imits'} = {
 'MOD01' => 8,
 'MOD03' => 8,
 'MOD021KM' => 8,
 'MOD02HKM' => 8,
 'MOD02QKM' => 8,
 'MOD02OBC' => 8,
};

9.13 $data_expiration_max_hours

This parameter is OPTIONAL (but see Section 9.12).

The $data_expiration_max_hours parameter is the number of hours after which any data
still resident within S4PM will be deleted from disk. Normally, data are deleted after all
outstanding uses for that data file have been used up (the outstanding uses falls to zero).
But the uses for some data may not fall to zero due to the production rules for optional
input (e.g. an optional data input may show up, but after the algorithm has already given
up on it). Thus, this parameter guarantees that data files won't build up indefinitely and
choke the system.

The value specified here will apply to ALL data types. If you want different values for
different data types, then see Section 9.13.

Example:

$data_expiration_max_hours = 48;

9.14 $stations{$station_name}{'$cfg_max_jobtime'}

This structure is OPTIONAL.

Optionally, for one or more stations you may specify maximum job times in seconds for
certain jobs running in that station. When a running job exceeds the maximum time, the
color of the box will change from green to yellow. This serves as a clue to operators that
there may be a problem to investigate. There is no other effect beyond the color change.
Hash keys are work order types for that station and hash values are the maximum number
of seconds. By default, no maximum time is configured.

For example:

S4PM 5.18.0 Installation and Configuration Guide: 9. The Stringmaker String
Configuration File

1/26/2007 64

$stations{'find_data'}{'$cfg_max_jobtime'} = {
 'FIND_MoPGE01' => 2000,
 'FIND_GdPGE02B' => 150,
 'FIND_MoPGE03' => 1100,
 'FIND_MoPGE71' => 900,
 'FIND_GdMOD02SS' => 90,
};

9.15 %proxy_esdts

This parameter is OPTIONAL.

The %proxy_esdts parameter is a hash that is only applicable for on-demand processing
(when $on_demand is set to non zero in the string configuration file) and even then, it is
optional. The %proxy_esdts hash provides a mechanism for mapping proxy data types to
actual data types (aka ESDTs). In on-demand processing, very often algorithms can
perform processing (e.g. subsetting) on any one of several to many data types. The easiest
way to approach this situation is to tell S4PM that a proxy data type will be used to
represent any one of the actual data types the algorithm will process. When this is done,
the algorithm need only be configured to work with one data type, the proxy, rather than
with a large list of data types.

Hash keys are the data type proxy names (which can be arbitrary) and the hash values are
lists of regular expression patterns that will match the data types the proxy represents. As
yet, proxy data types cannot be used in upstream processing.

For example:

%proxy_esdts = (
 'MODOCL23' => ['M[OY][013AD][246OPS][1278MQWCFNS][WDAMB1]'],
 'MOD03' => ['M[OY]D03'],
 'AIRL2CRS' => ['AIRI2CCF','AIRX2RET','AIRX2SUP'],
);

9.16 $smart_polling, @smart_polling_intervals,

@smart_polling_freqs

These parameters are OPTIONAL.

The $smart_polling parameter is used to enable or disable smart polling in the Find Data
station. Polling here refers to the polling of S4PM disk pools for input data needed by
algorithms. Smart polling actually involves three parameters: $smart_polling,
@smart_polling_intervals, and @smart_polling_freqs.

S4PM 5.18.0 Installation and Configuration Guide: 9. The Stringmaker String
Configuration File

1/26/2007 65

Smart polling affects the polling of the S4PM file system for data files in the Find Data
station. By default, Find Data polls the appropriate disk pool for the data it wants every
30 seconds, a value that is configurable. This polling frequency is maintained regardless
of how long it has been polling or how long it’s been since the last data file was found.
For some algorithms, such polling of the file system may last days. When there are many
Find Data jobs running simultaneously, the impact of many frequent pollings can have a
negative impact on disk performance.

With smart polling, the polling frequency can be adjusted so that it ramps down the
longer it has been unsuccessful in finding any data. The theory behind smart polling is
that if data aren’t found relatively quickly, there is no sense in continuing to poll every 30
seconds. In smart polling, the polling frequency is high (e.g. every 30 seconds) for a
configurable period of time. After that time, the frequency decreases to another value
(e.g. every five minutes). After another time interval, the frequency decreases further. At
any time, however, if Find Data find at least one file, the frequency is reset to highest
frequency (e.g. 30 seconds). The theory is that if one data file is found, then the
likelihood of others being found is high again.

The default time-frequency decay pattern is:

Up to this elapsed time with no hits… Polling is every:
5 minutes 30 seconds
1 hour 5 minutes
6 hours 30 minutes
1 day 2 hours
12 days 12 hours
More than 12 days 24 hours

Table 9-2. Default polling frequency decay rate in the Find Data station when “smart polling” is
invoked.

Three parameters control smart polling:

Smart Polling Parameters Description
$smart_polling Set to non-zero to turn on smart polling; set to

zero or unset it to disable smart polling. The
default is zero (no smart polling).

@smart_polling_intervals Array that defines the elapsed times (seconds)
after which the frequency changes to the next
value in the @smart_polling_freqs array (next).

@smart_polling_freqs Array that defines the polling frequencies
(seconds). There needs to be one more
element in this array than in the
@smart_polling_intervals array to account for
elapsed times greater than the last element.

Table 9-3. Parameters that invoke and define smart polling.

To invoke smart polling, the only parameter required is $smart_polling. Set to non-zero
to enable smart polling; set to zero or unset it to disable smart polling (the default). If

S4PM 5.18.0 Installation and Configuration Guide: 9. The Stringmaker String
Configuration File

1/26/2007 66

$smart_polling is set but @smart_polling_intervals and @smart_polling_freqs are not,
the polling intervals and frequencies will default to those shown in Table 9-2.

In theory, any polling behavior may be specified with the @smart_polling_intervals and
@smart_polling_freqs parameters, even those that do not decay over time.

For example:

$smart_polling = 1;
@smart_polling_intervals = (300, 3600, 7200, 86400);
@smart_polling_freqs = (30, 300, 600, 3600, 7200);

9.17 $has_qc

This parameter is OPTIONAL.

The $has_qc parameter enables or disables quality control (QC) checking of files
produced in Run Algorithm. This affects all QC checking in the string. The particular QC
checks performed (or not) are determined by the %qc_output hash in the
s4pm_stringmaker_datatypes.cfg file (see Section 7.7).

For example:

$has_qc = 1;

9.18 $export_ph

This parameter is OPTIONAL.

The $export_ph parameter enables or disables the exporting of the production history
(PH) tar files to the ECS archive (for those algorithms producing a PH file; see Section
10.3.3). PH files are treated somewhat like output data files. When this parameter is
disabled, PH files will build up in the PH disk pool. A pseudo-cron job in the Repeat
Daily station will clean up these PH files after they age out. When this parameter is
enabled, the PH files will be cleaned out once a successful PAN has been received (same
manner as with other exported files).

Note that if none of the algorithms are configured to generate a PH, the $export_ph is
forced to zero (i.e. disabled).

For example:

$export_ph = 1;

S4PM 5.18.0 Installation and Configuration Guide: 9. The Stringmaker String
Configuration File

1/26/2007 67

9.19 $use_checksum

This parameter is OPTIONAL.

The $use_checksum parameter enables or disables one particular type of QC checking:
the computation of a checksum for the data file (although check summing is not normally
considered a QC check, it is included in S4PM QC checking for convenience). When
turned on, computed checksums are included in the Product Delivery Records (PDRs)
used for exporting the data to the ECS.

For example:

$use_checksum = 0;

9.20 $has_auto_request

This parameter is OPTIONAL.

The $has_auto_request parameter enables or disables auto request/auto acquire
functionality. When enabled, the Auto Request or Auto Acquire stations are added to the
string (the choice depends upon whether or not the string has a Request Data station, an
Acquire Data station, or both). This station and the associated Auto Request tool provide
some automation for requesting data from the archive to initiate processing; this is
normally a manual activity.

For example:

$has_auto_request = 0;

9.21 $on_demand

This parameter is OPTIONAL.

The $on_demand parameter enables or disables a S4PM configuration supporting on-
demand processing. When enabled, a number of stations are disabled and others are
enabled. On-demand processing allows processing to be somewhat event driven (as
opposed to data driven) where events (typically, requests via a user client) are sent to
S4PM in the form of ODL files.

For example:

$on_demand = 1;

S4PM 5.18.0 Installation and Configuration Guide: 9. The Stringmaker String
Configuration File

1/26/2007 68

9.22 $dme, $sub_request_email, $pickup_dir

These parameters are OPTIONAL.

The $dme parameter enables or disables a S4PM configuration supporting data mining.
When enabled, the parameters $sub_request_email and $pickup_dir must also be set. The
$sub_request_email should be set to the e-mail address of the user responsible for setting
up subscriptions in ECS. The ‘@’ symbol needs to be escaped.

The $pickup_dir parameter should be set to the machine name and the directory on the
ECS Datapool where output products will be placed. Typically, this directory is in an
anonymous FTP area where a Data Mining Edition user can retrieve the data. The
directory needs to be local for that machine.

For example:

$dme = 1;
$sub_request_email = “help\@daac.gsfc.nasa.gov”;
$pickup_dir = “g0dps01:/usr/daac/data”;

9.23 $data_source_polling, $data_source_polling_dir

These parameters are OPTIONAL.

The $data_source_polling enables or disables the polling of input data from a disk
resource rather than from the ECS archive (subscription or ordering). If set, the parameter
$data_source_polling_dir must also be set.

The $data_source_polling_dir parameter must be set to the root of the polling directory.
The root directory is that directory under which the category directories exist (e.g.
MOAT, MOOG) as configured in ECS Datapool. It is under these directories that the data
type subdirectories exist named:

<datatype>:<versioned>

For example:

MOD08_M3.004

Under the data type directories are directories for each date (YYYY.MM.DD as in
2004.11.27). Finally, under the date directories, the data and XML files are assumed to
reside. Thus,

$data_source_polling_dir/<category>/<datatype>/<date>/data

S4PM 5.18.0 Installation and Configuration Guide: 9. The Stringmaker String
Configuration File

1/26/2007 69

In theory, any data area structured similar to the ECS data pool can be used with this
option.

For example:

$data_source_polling = 1;
$data_source_polling_dir = “/Datapool/OPS/user/”;

9.24 @datapool_insert_datatypes, $datapool_staging_dir

These parameters are OPTIONAL.

The @datapool_insert_datatypes parameter is an array of output data types that are to be
inserted into the ECS Datapool rather than into the ECS archive. The ECS Datapool must
be first configured for non-ECS inserts of the data types set in this array. When set, the
parameter $datapool_staging_dir must also be set.

The $datapool_staging_dir parameter must be set to the staging directory location on the
machine that runs the script to insert data files into the ECS data pool action queue. The
directory must be visible on that machine.

For example:

@datapool_insert_datatypes = (‘RMT03’, ‘RMT021KM’, ‘RMT02HKM’);
$datapool_staging_dir = “/datapool/OPS/user/short_term/tmp”;

9.25 $input_symlink_root, $input_symlink_expiration_file

These parameters are OPTIONAL.

The $input_symlink_root parameter enables the symbolic linking of input data to the
INPUT disk pool rather than having it pushed there. This feature is intended for situations
where the input data for a string reside on a local disk, but outside of S4PM. An example
is the ECS Datapool where data is ordered via FTP pull using the Synergy 4 distribution
path. In this particular case, the data are staged by ECS to the Datapool. Using this
parameter, S4PM can be configured to create symbolic links to those data (assuming
they’re visible locally).

Set the $input_symlink_root parameter to the machine and root path (separated by a
colon) of the data location on the local machine. The directory specified in the DN will
be appended to this root path to find the data.

The $input_symlink_expiration_file is an additional option applicable only if
$input_symlink_root is set. The $input_symlink_expiration_file is the full pathname of a

S4PM 5.18.0 Installation and Configuration Guide: 9. The Stringmaker String
Configuration File

1/26/2007 70

file into which S4PM will write out URs of files that have been deleted from S4PM and
can therefore be safely deleted from the location where they physically reside. For ECS
site, this means Datapool.
Special note for ECS sites: since files going to S4PM as input are not actually FTP’ed,
Datapool will not know when to delete them; they will only expire once they age beyond
the FTP pull maximum shelf life.

With the $input_symlink_expiration_file parameter, it is assumed that some process or
script (not part of S4PM) will read this UR file and delete or expire the data.

Example:

$input_symlink_root = “g0dps01:/data/root/”;
$input_symlink_expiration_file = “/data1/OPS/expire.log”;

NOTE: The $input_symlink_root parameter requires that the $s4pm_email parameter be
set in the Stringmaker Global configuration file.

9.26 $scli_host

This parameter is OPTIONAL.

If SCLI is not installed on the machine where S4PM is to be run, this variable should be
set to the machine where SCLI is to be accessed remotely using secure shell. If SCLI is
installed locally, this variable should be set to the empty string or unset.

9.27 %ordering_tool_parms

This parameter is OPTIONAL.

The %ordering_tool_parms parameter is a hash that configures the Ordering interface
available in the Request Data station. There are two attributes. The first is increment
which sets the width (in seconds) of the smallest interval in the Compose Data request
tool. The default is 7200 seconds which means that the display will show a day divided
up into 12 two-hour increments.

The second attribute is files_per_hour which affects the Fill Hole ordering interface. In
this tool, the total width is one 'increment' and it is sub-divided up into files_per_hour
sub-increments. The default is 12 meaning that each sub-increment is 300 seconds (if
'increment' is 7200).

For example:

S4PM 5.18.0 Installation and Configuration Guide: 9. The Stringmaker String
Configuration File

1/26/2007 71

%ordering_tool_parms = (
 'increment' => 7200,
 'files_per_hour' => 12,
);

9.28 $smart_allocation

This parameter is OPTIONAL.

The $smart_allocation parameter enables or disables smart allocation in the S4PM string.
Smart allocation means that disk pool space is allocated based upon the actual data file
sizes rather than on predicted (and maximum) file sizes.

By default, smart allocation is disabled.

When disabled (default), S4PM disk pool allocations are based solely on the file sizes
stored in the %all_datatype_max_sizes hash in the Stringmaker data types configuration
file (see Section 7.2). Typically, the sizes specified here are the maximum possible file
sizes to guarantee that disk resources aren’t over utilized.

When enabled, S4PM disk pool allocations are based on actual file sizes, which may vary
from file to file for the same data type. S4PM does this by first allocating space based on
the predicted file size in the %all_datatype_max_sizes hash, but then makes adjustments
once the file arrives or is created within S4PM.

Smart allocation is best suited for S4PM strings where data file sizes vary widely from
file to file as in an on-demand processing string where algorithms generate subsets of
data. Smart allocation can, however, be used in all strings (although there is some small
performance penalty for adjusting allocations).

Note: In this release, setting $smart_allocation assumes that you also have

$input_symlink_root set. That is, $smart_allocation assumes that inputs
in the INPUT disk pool are symbolic links only. In later releases, this
assumption might be dropped.

9.29 $external_archive_system

This parameter is OPTIONAL.

The $external_archive_system is a parameter that sets with what external archive system
S4PM strings are to interoperate. The value determines to which system data products are
exported and from which system Product Acceptance Notifications (PANs), Distribution
Notifications (DNs), and Subscription Notifications are received.

S4PM 5.18.0 Installation and Configuration Guide: 9. The Stringmaker String
Configuration File

1/26/2007 72

The valids are listed below and the default is ‘ecs’.

If the $dataserver_ur parameter is set, Stringmaker will infer ‘ecs’ even if you don’t
declare that here.

Valid Description
ecs S4PM strings interoperate with the EOSDIS

Core System (ECS). This is the default.
s4pa S4PM strings interoperate with one or more

S4PA (Simple, Scalable, Script-Based,
Science Archive) systems or with a data source
from which PDRs are made available (such as
the MODIS LAADS).

both S4PM strings interoperate with both ECS and
S4PA.

Table 9-4. Valids for the $external_archive_system parameter.

Note that if you set $external_archive_system to ‘s4pa’ or ‘both’, you may also need to
set the %s4pa_data_map parameter in the Stringmaker Data Types configuration file (see
Section 7) if data are to be made available via the Compose Data Request tool. If,
however, S4PM will be getting data from S4PA in only a pure forward processing mode,
then the %s4pa_data_map parameter can be omitted.

9.30 $use_datahandles

The $use_datahandles (formerly, $use_filehandles) parameter is experimental, but may
be used with caution in this release. This parameter enables S4PM to support native file
names internally (that is, file names not adhering to the standard S4PM file naming
convention).

To support native file names, S4PM overloads the current .ur files. Without data handles,
the .ur files contain the Universal Reference or UR of the data file. This may be the UR
as used in ECS or it may be simply the local granule ID when data do not come from
ECS. The .ur file is also used as a signal file; Find Data uses it to determine when a data
file it’s looking for is ready to be used by another algorithm.

When data handles functionality is invoked, the .ur file is extended to include more than
just the UR. The file also contains the full pathnames of the data files, the metadata files
(both ODL and XML), and any associated browse files. The S4PM file naming
convention is applied only to the .ur files themselves, thus freeing the data files to retain
their native file names.

S4PM 5.18.0 Installation and Configuration Guide: 9. The Stringmaker String
Configuration File

1/26/2007 73

9.31 %pdr_polling_parms

This parameter is OPTIONAL.

The %pdr_polling_parms defines several parameters that define the configuration of the
Poll PDR station. This station is used for bringing data into S4PM from a remote system
posting data and PDRs.

The remote_host attribute is the fully qualified domain name of the FTP host machine.
The remote_dir attribute defines the remote directory (as visible in a FTP session) of the
PDR directory. Finally, setting the fix_pdr_host to non-zero causes any host listed in the
PDR to be overwritten with the host name as set in the remote_host attribute. This might
be useful if, for example, the PDRs contain a host name that differs from the FTP host
machine (this is the case of MODIS LAADS).

For example:

%pdr_polling_parms = (
 'remote_host => 7200,
 'remote_dir' => 12,
 ‘fix_pdr_host’ => 1,
);

9.32 %commands_addenda

This parameter is OPTIONAL.

The %commands_addenda parameter has only limited utility and is needed only for
advanced configurations. This parameter is a hash that allows options to be added to any
of the commands run in a station. The primary hash key is the station directory name and
the secondary hash key is the work order type. The hash value is a string containing
command line options and arguments to be appended to the default command line
associated with that work order type in that station.

The purpose of this parameter is to allow non-standard arguments to be appended to any
of the commands run in any of the S4PM stations. The default options and arguments are
set by Stringmaker based on parameters defined in the Stringmaker configuration files.
Some options and arguments, however, are never set by Stringmaker although they may
have some utility in unusual configurations.

Note that you must understand what command line options and arguments are available
for S4PM script whose interface you wish to modify. This information is available in the
man pages or in the documentation of the scripts themselves.

S4PM 5.18.0 Installation and Configuration Guide: 9. The Stringmaker String
Configuration File

1/26/2007 74

For example, to set the polling cycle for jobs of type FIND_L1BAlg1 in the Find Data
station to 60 seconds (overriding the default of 30):

$commands_addenda{‘find_data’}{‘FIND_L1BAlg1’} = “-poll 60”;

9.33 Parameter Overrides

The Stringmaker string configuration files are often the files in which earlier defined
parameters can be overridden. For example, the data type SEA_ICE version may be
specified in the s4pm_stringmaker_datatypes.cfg file as '003'. In one string, however, you
need to use version '004' of this data type without affecting the '003' version used in all
other strings. The easiest way to do this is to put the following override statement in the
<string>.cfg file:

$all_datatype_versions{'SEA_ICE'} = '003';

For this one string, the version '003' trumps the '004' in the Stringmaker data types
configuration file.

9.34 Sample Stringmaker String Configuration File

$stringid = "S4PM10_MO_FW";
$data_source = 'terra';
$instance = "test_string";
$host = 'g0spg11';
@run_sorted_algorithms = ('MoPGE03', 'MoPGE02', 'MoPGE01');
%algorithm_versions = (
 'MoPGE01' => '4.1.12',
 'MoPGE02' => '4.3.0',
 'MoPGE03' => '4.3.0',
);
%algorithm_profiles = (
 'MoPGE01' => 'TEST',
 'MoPGE02' => 'prototype',
 'MoPGE03' => 'REPROC',
);
%pool_capacity = (
 'MOD01' => 100,
 'MOD03' => 170,
 'MOD021KM' => 150,
);
$data_expiration_max_hours = 48;

Figure 9-1. A sample minimal Stringmaker string configuration file. Three algorithms are specified
here and there are only three data types involved.

S4PM 5.18.0 Installation and Configuration Guide: 10. The Stringmaker Algorithm
Configuration File

1/26/2007 75

10. The Stringmaker Algorithm Configuration File

There must be at least one algorithm configuration file for each version of each
algorithm.

The Stringmaker algorithm configuration file is used for both configuring a string and for
running the string. The Stringmaker algorithm configuration file is in Perl syntax, like the
other Stringmaker configuration files.

The following is a list of all parameters in the Stringmaker Algorithm configuration file:

Parameter Section Mandatory or Optional
$algorithm_name 10.2.1 Mandatory
$algorithm_version 10.2.2 Mandatory
$algorithm_exec 10.2.3 Mandatory
$processing_period 10.2.4 Mandatory
$product_coverage 10.2.5 Mandatory
$metadata_from_metfile 10.2.6 Optional
$trigger_coverage 10.2.7 Mandatory
$pcf_path 10.2.8 Mandatory
@stats_datatypes 10.2.9 Mandatory
$stats_index_datatype 10.2.10 Optional
%inputs, %outputs 10.2.11 Mandatory
%input_uses 10.2.12 Mandatory
$post_processing_offset,
$pre_processing_offset

10.3.1 Optional

$processing_start 10.3.2 Optional
$make_ph 10.3.3 Optional
$apply_leapsec_correction 10.3.4 Optional
$leapsec_datatypes 10.3.5 Optional
$algorithm_station 10.3.6 Optional
%specialized_criteria 10.3.7 Optional
%file_accumulation_parms 10.3.8 Optional
%production_summary_parms 10.3.9 Optional
$preselect_data_args 10.3.10 Optional
$trigger_block_args 10.3.11 Optional

Table 10-1. Parameters in the Stringmaker Algorithm configuration file.

10.1 File Name

The file name for the algorithm Stringmaker configuration file must be:

<algorithm_name>_<profile_name>.cfg

where <algorithm_name> is the name of the algorithm and <profile_name> is the name
of the profile for this algorithm. A profile allows the same algorithm to have more than
one set of production rules.

S4PM 5.18.0 Installation and Configuration Guide: 10. The Stringmaker Algorithm
Configuration File

1/26/2007 76

For example:

MoPGE02_RPROC.cfg

10.2 Mandatory Parameters

A number of parameters are mandatory. The sections below describe these parameters.

10.2.1 $algorithm_name

This parameter is MANDATORY.

The $algorithm_name parameter is a string representing the algorithm name. It must
match the name of the directory into which the algorithm is installed and the
$algorithm_name parameter set in the Stringmaker algorithm configuration file name.

Example:

$algorithm_name = 'MoPGE01';

10.2.2 $algorithm_version

This parameter is MANDATORY.

The $algorithm_version parameter is a string representing the algorithm version. It must
match the name of the subdirectory under the algorithm directory into which the
algorithm is installed.

Example:

$algorithm_version = '2.4.3m';

10.2.3 $algorithm_exec

This parameter is MANDATORY.

The $algorithm_exec is a string representing the name of the executable to run for this
algorithm. It may be a binary executable, script, or a wrapper script calling other scripts
or binaries. There can only be one value for this parameter.

Example:

$algorithm_exec = ‘PGE02.csh’;

S4PM 5.18.0 Installation and Configuration Guide: 10. The Stringmaker Algorithm
Configuration File

1/26/2007 77

10.2.4 $processing_period

This parameter is MANDATORY.

The $processing_period parameter is the processing period in seconds. It specifies over
what data time length the algorithm is to run (not wall-clock time!). If the processing
period is less than the time coverage specified for the trigger input data (see Section
10.2.11.3), multiple FIND work orders will be produced (each resulting in a algorithm
run) spanning the processing period.

If the $processing_period is set to zero and the $trigger_coverage (Section 10.2.7) is set
to zero, the number of work orders output and the start and end times of the processing
period written into the output work orders are determined by the start and end times of
the data in the SELECT input work order and the $product_coverage (Section 10.2.5).
This is useful for production where the time coverage of the trigger data is not fixed but
the output product coverage is (for example, in direct broadcast).

Another production rule is triggered by setting both $processing_period and
$trigger_coverage to zero. In this case, the correct number of output work orders and the
processing start and stop times in those work orders will accommodate the trigger input
data coverages dynamically.

In summary:

Settings Production Rule Result
$processing_period = $trigger_coverage One run per trigger data file.
$processing_period < $trigger_coverage Multiple number (fixed) runs per trigger data file

(equal to
$trigger_coverage/$processing_period)

$processing_period = 0 and
$trigger_coverage = 0

Multiple number (dynamic) of runs per trigger
data file enough to cover the particular input
with data time aligned with dynamic input.

Table 10-2. Possible settings of the $processing_period and $trigger_coverage parameters and the
resultant production rule invoked.

Example:

$processing_period = 300;

Note: The start time of any particular algorithm run is based
upon the start time of a particular trigger data file. To
make the processing start time independent of the trigger
data start time, use the $processing_start parameter
(Section 10.3.2).

S4PM 5.18.0 Installation and Configuration Guide: 10. The Stringmaker Algorithm
Configuration File

1/26/2007 78

10.2.5 $product_coverage

This parameter is MANDATORY.

The $product_coverage parameter is the time coverage (in seconds) of the output
products. Note that the assumption here is that ALL output products from an algorithm
have the same time coverage. Although this attribute is somewhat redundant, since the
coverages of individual data types are already contained in this configuration file, it does
have a special purpose.

In the case where the trigger input data coverages are not fixed in length (for example,
direct broadcast), the $product_coverage is used along with the start and stop times of the
input SELECT work order to dynamically determine the number of work orders to output
and the processing start and stop times in those work orders. Setting the
$processing_period and the $trigger_coverage to zero triggers this feature. See Table 10-
1.

Example:

$product_coverage = 300;

10.2.6 $metadata_from_metfile

This parameter is OPTIONAL.

For algorithms that employ the ECS Toolkit, the $metadata_from_metfile parameter
simply indicates whether metadata reads (of input data) should be from the
accompanying metadata files or from the files themselves which are assumed to be HDF.
The choice affects how the runtime PCFs are generated.

Algorithms that make use of the “run easy” feature of S4PM (via the s4pm_run_easy.pl
script) must have this parameter set to zero or unset.

Note, this setting applies to ALL input products. The valid choices are 0 (all reads will be
from HDF files) and 1 (all reads will be from accompanying metadata files.

This parameter has no effect on algorithms that do not use the ECS Toolkit or for input
files that are not in HDF.

Example:

$metadata_from_metfile = 0 ;

S4PM 5.18.0 Installation and Configuration Guide: 10. The Stringmaker Algorithm
Configuration File

1/26/2007 79

10.2.7 $trigger_coverage

This parameter is MANDATORY.

The $trigger_coverage parameter is the time coverage of the trigger input in seconds.
Normally, this should match exactly the coverage for the trigger data type (see %inputs,
%outputs).

In on-demand processing, the $trigger_coverage associated with the PSPEC trigger input
is ignored.

Note that the $trigger_coverage in conjunction with the $processing_period can be used
to invoke several production rules. See Table 10-1.

Example:

$trigger_coverage = 7200;

10.2.8 $pcf_path

This parameter is MANDATORY.

The $pcf_path parameter is the full or relative path to the SDP Toolkit's Process Control
File (PCF) template for this particular algorithm. This PCF template will be the basis for
generating the runtime PCFs for each algorithm run.

Example:

$pcf_path = "../prepare_run/GDAAC.PGE01.pcf.tpl ";

10.2.9 @stats_datatypes

This parameter is MANDATORY.

The @stats_datatypes parameter is an array that contains a list of output data types on
whom performance statistics are to be generated in the Run Algorithm station. Not all
data types necessarily need to be listed here. But it is simpler to list them all.

Example:

@stats_datatypes = ('MOD01', 'MOD03');

S4PM 5.18.0 Installation and Configuration Guide: 10. The Stringmaker Algorithm
Configuration File

1/26/2007 80

10.2.10 $stats_index_datatype

This parameter is OPTIONAL.

The $stats_index_datatype parameter is set to the one data type listed in the
@stats_datatypes (Section 10.2.9) considered to be the index or main data type. The
default is the first item in the @stats_datatypes array (i.e. $stats_datatypes[0]).

Example:

$stats_index_datatype = 'MOD01';

10.2.11 %inputs, %outputs

These parameters are MANDATORY.

The %inputs hash describes dynamic inputs data used by the algorithm and the %outputs
hash describes dynamic output data generated by the algorithm. Static input files are
assumed to permanently reside with the algorithm and are fixed in the algorithm's PCF
template file. All possible input data and all possible output data must be described in
these hashes.

The hash keys are unique tags such as input1, input2 and output1, output2. They can be
any string as long as they are unique within their respective hashes.

For each such key, a number of attributes and their values describe various aspects of the
input and output data. These attributes are described in the following table:

S4PM 5.18.0 Installation and Configuration Guide: 10. The Stringmaker Algorithm
Configuration File

1/26/2007 81

Attribute Description

data_type The data type name (ESDT ShortName if in
ECS) of the input or output. May be a proxy
data type (see 10.2.11.1)

data_version The data type version (ESDT VersionID if in
ECS) of the input or output. May be for a proxy
data type. See 10.2.11.2.

need For inputs, this sets the need; for outputs, it is
generally ignored, but can be used to set
spatial region identifiers. See Section
10.2.11.3. Valids are: REQ, REQn, TRIG,
OPTn, Spatial_Tag.

timer Input wait timer in seconds. Ignored for
outputs. See 10.2.11.4.

lun PCF logical unit number (LUN). See Section
10.2.11.5.

currency The input currency. Valids are: CURR, PREVn,
FOLLn, NPREVn, NFOLLn. See 10.2.11.6.

coverage The time coverage in seconds of the input.
Ignored for output. See Section 10.2.11.7.

boundary Data boundary. See Section 10.2.11.8.
test Optional test to support the required-if

production rule. See Section 10.2.11.9.

Table 10-3. Hash attributes of the %inputs and %outputs hashes in the Stringmaker algorithm
configuration file.

S4PM 5.18.0 Installation and Configuration Guide: 10. The Stringmaker Algorithm
Configuration File

1/26/2007 82

Below is an example for an algorithm that produces one output from two inputs:

%inputs = (
 'input1' => {
 'data_type' => 'MOD01',
 'data_version' => '005',
 'need' => 'TRIG',
 'timer' => 0,
 'lun' => '79901',
 'currency' => 'CURR',
 'coverage' => 300,
 'boundary' => 'START_OF_DAY',
 },
 'input2' => {
 'data_type' => 'MOD03',
 'data_version' => '005',
 'need' => 'REQ',
 'timer' => 0,
 'lun' => '79920',
 'currency' => 'CURR',
 'coverage' => 300,
 'boundary' => 'START_OF_DAY',
 'test' => 's4pm_reqif_night.pl',
 },
);
%outputs = (
 'output1' => {
 'data_type' => 'MOD02',
 'data_version' => '005',
 'lun' => '79901',
 'currency' => 'CURR',
 'coverage' => 300,
 },
);

10.2.11.1 data_type

The data_type attribute is needed for both input and output entries. It is the data type
name (ESDT ShortName if in ECS). If the data type is to be from the ECS archive, there
must be a valid ESDT descriptor file for this data type and version installed and
configured in the ECS.

For on-demand processing, the output data types do not get archived and, therefore, there
is no need for a valid ESDT descriptor file in the ECS.

10.2.11.2 data_version

The data_version attribute is needed for both input and output entries and is the data type
version (VersionID associated with the ESDT ShortName in ECS).

S4PM 5.18.0 Installation and Configuration Guide: 10. The Stringmaker Algorithm
Configuration File

1/26/2007 83

10.2.11.3 need

The need attribute expresses whether the input is required or optional and to what degree.
This field is ignored for output files except in the case where it is used to tag spatial
regions (see Section 10.3.12). The following table lists the possible settings for the need
attribute and their meanings:

need Setting Descriptions
REQ, REQn The input is required; the algorithm cannot run without it. The n is an

integer expressing the order of preference of the input relative to others
having the same LUN (with 1 being the most preferred). Note that REQ
is equivalent to REQ1. This alternate input production rule is used in the
case where some data file for this LUN is required.

TRIG Same as REQ (which is the same as REQ1), but this marks the input as
the data type that triggers the algorithm. The trigger input MUST be the
one set for DATA_TYPE_TRIGGER and MUST be the first input in this
configuration file. Multiple algorithms may use the same data type as a
trigger.

OPTn The input is optional; the algorithm will run without it. The n is an integer
expressing the order of preference of the input relative to others having
the same LUN (with 1 being the most preferred). Unlike with REQn, if
none of the data files for this LUN are found, the algorithm will still be
run.

REQIF, REQIFn The input is required, but only if a test associated with the trigger input
data file succeeds (exits with a non-zero). Otherwise, the input is
dropped entirely from the rule set. When used, there must also be a test
defined on the input trigger file with the ‘test’ attribute (Section
10.2.11.9).

Table 10-4. Possible setting of the need attribute in the %inputs hash in the Stringmaker algorithm
configuration file.

10.2.11.4 timer

The timer attribute is the timer in seconds that represents how long the production system
should wait for the input. The timer for required input (anything with a need of REQn)
starts once the trigger input arrives. The timer for optional input (anything with a need of
OPTn) starts once all of the required input arrives. The timer is ignored for the trigger
data type and for all outputs.

10.2.11.5 lun

This is the logical unit number (PCF) associated with this data type as listed in the PCF
template.

S4PM 5.18.0 Installation and Configuration Guide: 10. The Stringmaker Algorithm
Configuration File

1/26/2007 84

10.2.11.6 currency

The currency expresses how the input data is aligned with the trigger data file in terms of
start and stop times. This field is ignored for output files. Valid settings are described in
the table below:

currency Setting Description
CURR The input is contemporaneous with the algorithm processing period
PREVn The input is n steps previous to the algorithm processing period (by

increments equal to the time coverage of the input itself). A PREV1
means the previous data file, a PREV2 means the data file before that,
etc.

FOLLn The input is n steps following the algorithm processing period (by
increments equal to the time coverage of the input itself). A FOLL1
means the following data file, a FOLL2 means the data file following
that, etc.

NPREVm,n The input requested is the nearest in time (looking backward) to the
processing period of the algorithm. The n and m are integers that
specify how far to begin looking back and how far to look back. m is an
integer that specifies where to begin looking back with 0 being the
current time period (equivalent to CURR). n is an integer that specifies
the last time period to look back.

For example, 'NPREV0,4' means look first for the current data file
(that's what the 0 means). If that is not available, then look for the
previous one (equivalent to PREV1). If that is not available, then look
for the one previous to that (equivalent to PREV2). And so on with the
equivalent to PREV4 being that last one. To do the same thing but omit
the current data file in the search, use 'NPREV1,4' instead.

The Select Data station will, in fact, convert NPREVm,n into the
appropriate CURR and/or PREVn equivalents. The timer associated
with each equivalent entry will be the original timer split evenly among
the equivalents. Thus, if we used 'NPREV0,3' and a timer of 7200, the
current data file would be searched for up to 1800 seconds. If it wasn't
found within that time period, the search for the next, PREV1, would
begin and expire 1800 seconds later. If that data file wasn't found, the
search for PREV2 would commence and so on.

NFOLLm,n This functions the same as NPREVm,n described above, except the
input requested is the nearest in time looking forward.

Table 10-5. Possible setting of the currency attribute in the %inputs hash in the Stringmaker
algorithm configuration file.

10.2.11.7 coverage

The coverage attribute is the temporal coverage of the data in seconds.

S4PM 5.18.0 Installation and Configuration Guide: 10. The Stringmaker Algorithm
Configuration File

1/26/2007 85

10.2.11.8 boundary

The boundary attribute is the data boundary against which to determine start times of
input data files. Valids are START_OF_MONTH, START_OF_WEEK,
START_OF_DAY, START_OF_AIRS_PENTAD, START_OF_12HOUR,
START_OF_8HOUR, START_OF_6HOUR, START_OF_4HOUR,
START_OF_2HOUR, START_OF_HOUR, START_OF_MIN, and START_OF_SEC.
An offset in seconds, plus or minus, may be applied to the boundary (e.g.
START_OF_DAY-3600 to make the boundary be 23:00 hours rather than 00:00 hours).
This attribute is ignored for output files.

The START_OF_AIRS_PENTAD covers five-day blocks, but the remaining days at the
end of a calendar month (e.g. 1 to 4 days) become the last block of the month. It was
added to support AIRS processing, but may be useful to others.

The START_OF_MONTH is based on calendar month. Thus, the number of days within
will vary from month to month as appropriate.

10.2.11.9 test

The test attribute is required if the need attribute has been set to REQIF or REQIFn. This
attribute defines the command or script to run on the trigger input data file such that if the
test is successful, this input stays in the rule set. If the test fails, however, this input is
dropped from the rule set.

The test itself can be any command or script. If a script, the path needs to be included if
the script is not locatable via the PATH environment variable. Whether a command or a
script, the full pathname of the trigger data file will be passed to it as the last argument.
The test can involve any processing on the data file or even on the associated metadata
file.

If the command or script exits with a zero, the test is assumed to have failed and the
output is dropped from the rule set. If the exit is non-zero, the test is assumed to have
succeeded and the input is retained in the rule set as a standard REQ input.

Thus, zero means PASS and non-zero means FAIL. Be careful of the sense of this
statement.

Two scripts, s4pm_reqif_day.pl and s4pm_reqif_night.pl, included in S4PM serve as both
reference implementations for this production rule and as useful tests.

10.2.12 %input_uses

This parameter are MANDATORY.

S4PM 5.18.0 Installation and Configuration Guide: 10. The Stringmaker Algorithm
Configuration File

1/26/2007 86

This hash specifies the number of times each data type is used by this algorithm. The
hash keys are the data type names and the hash values are the number of uses for that data
type. To determine the number of uses, consider how many runs of the algorithm will use
that input. Typically, it is 1. But for inputs spanning a long range in time, several runs of
the algorithm may be needed to process the entire file.

Note that as of S4PM 5.8.1, the hash %output_uses is no longer needed and is, in fact,
ignored. Instead, the output uses are determined automatically.

Example:

%inputs_uses = (
 'MOD000' => 9,
 'AM1ATTN0' => 9,
 'AM1EPHN0' => 9,
);

10.3 Optional Parameters

The following parameters are optional in that they are only needed if the particular
functionality is desired.

10.3.1 $post_processing_offset, $pre_processing_offset

These parameters are OPTIONAL.

By default, the beginning of the algorithm processing period is aligned with the start time
of the input trigger data file. An offset from that alignment can be specified here as
positive or negative seconds. If positive, the processing period will start after the trigger
data file time by the amount specified. If negative, the processing period will start before
the trigger data file time by the same amount. The default is zero if not specified.

With $post_processing_offset, the offset is applied in a post examination sense. That is,
the Select Data does its determination of data times relative to the processing period
assuming no offset (e.g. the definition of current or previous data file is based on no
offset). Only at the point where the processing start and stop times are written into the
output PDR is the processing offset applied.

With $pre_processing_offset, the offset is applied in a pre examination sense. That is, the
Select Data station does its determination of data times relative to the processing period
assuming this offset (e.g. the definition of current or previous data file is based on this
offset).

S4PM 5.18.0 Installation and Configuration Guide: 10. The Stringmaker Algorithm
Configuration File

1/26/2007 87

Examples:

$pre_processing_offset = 300;

$post_processing_offset = 600 ;

10.3.2 $processing_start

This parameter is OPTIONAL.

By default, the processing start time is aligned to the start time of the trigger data file
(with PRE_ or POST_PROCESSING_OFFSET applied). To make the processing start
time completely independent of the start time of the trigger data, use
PROCESSING_START. Valids are the same as is used for data boundary, for example:
START_OF_WEEK, START_OF_DAY, START_OF_6HOUR, START_OF_HOUR,
START_OF_MIN, and START_OF_SEC. Unlike data boundaries, however, offsets of
plus or minus cannot be added to these.

10.3.3 $make_ph

This parameter is OPTIONAL.

The $make_ph parameter enables or disables the generation of a production history (PH)
tar file associated with every run of the algorithm. The PH tar file contains logs and other
information about the run that may be useful in debugging an algorithm.

To enable PH generation, set this parameter to a non-zero value. To disable, set it to zero
or leave it unset. The default is to not produce a PH file.

Example:

$make_ph = 1;

10.3.4 $apply_leapsec_correction

This parameter is OPTIONAL.

The $apply_leapsec_correction parameter indicates whether the leap second and AIRS
instrument offset corrections should be applied to the process start and stop times (LUNs

Note: Enabling PH generation doesn't necessarily mean that the
PH will be exported to the archive. That is controlled by
the $export_ph parameter in the Stringmaker string-
specific configuration file.

S4PM 5.18.0 Installation and Configuration Guide: 10. The Stringmaker Algorithm
Configuration File

1/26/2007 88

10258 and 10259) in the runtime PCF. If set to zero, no leap second or instrument offset
corrections are applied to the start and stop times. If set to non-zero, the leap second and
instrument offset corrections are applied to the start and stop times in the runtime PCF.
The default is 0 (disabled).

This option does NOT affect the data start and stop times by which Find Data will search
for data. For that, see $leapsec_datatypes.

Example:

$apply_leapsec_correction = 1;

10.3.5 $leapsec_datatypes

This parameter is OPTIONAL.

This parameter is a comma or space delimited list of data types in which the leap second
and AIRS instrument offset corrections should be applied. This affects the data times and
thus the file name patterns that Find Data will use to search for inputs. This option does
NOT affect the process start and stop times in the PCF (LUNs 10258 and 10259). For
that, see $apply_leapsec_correction.

Example:

$leapsec_datatypes = "AIRIASCI AIRIACAL AIRIBRAD";

10.3.6 $algorithm_station

This parameter is OPTIONAL.

This parameter is used rarely. Normally, all algorithms run within the single Run
Algorithm station. There is the option, however, to have one or more algorithms run in
other stations that have a different name than 'Run Algorithm'. This parameter sets that
name. Other than the name of the station, there is no functional difference between it and
the Run Algorithm station. The value specified in this parameter will become the station
directory name of the alternate Run Algorithm station. The S4PM Monitor will display
these extra Run Algorithm stations.

Note: This parameter is pertinent only to AIRS data processing
and will likely be removed from the S4PM baseline.

Note: This parameter is pertinent only to AIRS data processing
and will likely be removed from the S4PM baseline.

S4PM 5.18.0 Installation and Configuration Guide: 10. The Stringmaker Algorithm
Configuration File

1/26/2007 89

Example:

$algorithm_station = 'run_special_algorithm';

10.3.7 %specialized_criteria

This parameter is OPTIONAL.

The %specialized_criteria parameter option is only used for on-demand processing and
only for algorithms that need to have runtime parameters passed from the user's client,
through the V0 Gateway and into the runtime PCF. On-demand algorithms that read the
PSPEC file directly do not need this parameter set.

For each of the specialized criteria from the request ODL that are to appear in the runtime
PCF, a hash key-value pair must be added to the %specialized_criteria hash as illustrated
below:

%specialized_criteria = (
 '21200' => 'FORMAT|MOD021KM.005, MOD02HKM.005, MOD02QKM.005',
 '21210' => 'CHANNELS|MOD021KM.005, MOD02HKM.005,
MOD02QKM.005',
);

The hash keys are simply the PCF LUNs in which the runtime parameter will be placed.
The hash values have two parts separated by a pipe (|) character. The first part is the
specialized_criterion_name, which must match exactly the specialized criterion name as
it appears in the request ODL file and the second part is a list of data type and version
against which this specialized criterion applies.

In the above example, the runtime PCF will contain an entry for LUN 21200. That
runtime parameter will be named 'FORMAT' and the value contained in LUN 21200 will
be what ever was contained in the request ODL specialized criterion named 'FORMAT'
(e.g. a format specification) if the data type was one of the ones listed. The PCF will also
contain LUN 21200 with the name 'CHANNELS' and it will contain, presumably, a list
of channels.

The list of data types (and versions) is necessary since different data types might have
different specialized criteria associated with them.

S4PM 5.18.0 Installation and Configuration Guide: 10. The Stringmaker Algorithm
Configuration File

1/26/2007 90

10.3.8 The File Accumulation Production Rule

The file accumulation production rule and its parameter, %file_accumulation_parms, is
OPTIONAL.

The %file_accumulation_parms parameter is a hash that is used for algorithms that
invoke the file accumulation production rule. This production rule can be used when
there are many files of a particular data type needed as input to a single run of the
algorithm and is particularly useful if that data type is the trigger data type.

Normally, each arriving trigger file will result in a separate run of the algorithm. Using
the file accumulation production rule, however, the arriving data files will accumulate to
a specified number and only then trigger a single run of the algorithm on the set of
accumulated files.

When invoked, the file accumulation production puts the Select Data station into another
mode where it polls for the data needed. Normally, polling for data is the job of Find
Data station, but Select Data polls at a far lower frequency. Once sufficient data have
been located, Select Data reverts to its normal mode of operation and determines what
other data are needed by the algorithm. Then, the work order is passed to the Find Data
station as normal.

The %file_accumulation_parms hash is a consolidation of a recipe of steps that had to be
set individually in previous releases of S4PM. This complex and error-prone recipe is still
supported but should be considered deprecated.

The follow table describes the attributes in the %file_accumulation_parms hash:

Attribute Description
window_width This sets the width of the accumulation window in seconds, the time

period over which data are to be accumulated.
window_boundary This sets the boundary against which to align the accumulation window

itself. Valids are the same as are available for the 'boundary' attribute of
the %inputs hash.

polling_interval Sets how often in seconds the data to be accumulated are polled for.
timer Sets the maximum amount of time to wait in seconds for all files to

accumulate.
file_threshold Sets the minimum number of files needed by the algorithm. If the

file_threshold has been met by the time the timer is up, the job will
succeed. If that minimum hasn't been met, the job will fail.

Table 10-6. Hash attributes of the %file_accumulation_parms hash in the Stringmaker algorithm
configuration file.

S4PM 5.18.0 Installation and Configuration Guide: 10. The Stringmaker Algorithm
Configuration File

1/26/2007 91

For example:

%file_accumulation_parms = (
 'window_width' => 86400,
 'window_boundary' => ' START_OF_DAY',
 'polling_interval' => 7200,
 'file_threshold' => 10,
 'timer' => 86400*3,
);

10.3.9 The Production Summary File

The Production Summary file and its parameter, %production_summary_parms, is
OPTIONAL.

The %production_summary_parms parameter is a hash whose presence enables the
generation of a Production Summary file for each algorithm run. The Production
Summary file represents a summary of the information contained in several of the log
files produced when an algorithm is run in S4PM. The information that gets extracted out
of these files and into a production summary file is configurable. The Production
Summary file is considered by S4PM to be an output product of the algorithm. As such, it
has a data type name and version, space for it is allocated dynamically, and the file can be
exported.

The Production Summary file is composed of a small header and three sections. Each
section is a summary extracted from one of three files generated when ever an algorithm
is run within S4PM: the algorithm runtime log, the runtime process control file (PCF),
and the ECS Toolkit LogStatus file. This later file is only generated in S4PM by
algorithms that use the ECS Toolkit. The parameters in the
%production_summary_parms hash define what items out of these files to extract and
summarize in the Production Summary file.

The follow table describes the attributes in the %production_summary_parms hash:

Attribute Description
runlog_file This sets the list of patterns to match in the runtime log file. When a

match in this log file is found, the corresponding line is written out to the
Production Summary file. The most useful items to match are the lines
generated by the rusage. These patterns include: ELAPSED_TIME,
USER_TIME, SYS_TIME

This attribute is optional.

logstatus_file This sets the items to include and exclude from the LogStatus file. This
log file is only generated by algorithms using the ECS Toolkit. If the
LogStatus file doesn’t get generated, this attribute will be ignored.

The logstatus_file attribute itself contains two sub attributes: include and
exclude. Each of these, in turn, is set to a list of patterns to match
against lines in the LogStatus file. The include list sets what elements to
include in the Production Summary file. The exclude list sets what

S4PM 5.18.0 Installation and Configuration Guide: 10. The Stringmaker Algorithm
Configuration File

1/26/2007 92

Attribute Description
elements included by the include rule to exclude.

Typically, the strategy is to include all by setting the include sub
attribute to: ‘*’. The exclude attribute can list out what to specifically
exclude.

Unlike with the patterns set in the runlog_file attribute, the patterns here
are matched against the 3-line elements typical of the LogStatus file. If
there is a match, the whole 3-line element is included in the Production
Summary file (if allowed by the include/exclude rules).

Again, unlike the runlog_file attribute, not every matched 3-line element
is written to the Production Summary file. Only the first match is written
to the Production Summary file followed by a number indicating the
number of occurrences.

The patterns set in this attribute are typically the message mnemonics
themselves, something that the ECS Toolkit supports.

This attribute is optional.

pcf_file This sets the LUNs in the runtime process control file (PCF) to echo in
the Production Summary file. There is no pattern matching here. This
attribute should simply be set to a list of LUNs. A matching LUN in the
runtime PCF will then be echoed to the Production Summary file.

This attribute is optional.

lun This sets the LUN in the PCF that is associated with the Production
Summary file itself. Since the Production Summary is treated in S4PM
as a bona fide output product, it needs to be in the PCF template
associated with some LUN.

This attribute is optional. The default LUN is 90909.

data_type This sets the data type name of the Production Summary file.

This attribute is optional. The default is the algorithm name appended
with ‘_PS’.

data_version This sets the data type version of the Production Summary file. The
default is 001.

Table 10-7. Hash attributes of the %production_summary_parms hash in the Stringmaker algorithm
configuration file.

For example:

S4PM 5.18.0 Installation and Configuration Guide: 10. The Stringmaker Algorithm
Configuration File

1/26/2007 93

%production_summary_parms = (
 ‘runlog_file’ => [
 “DPR_ID”,
 “ELAPSED_TIME”,
 “USER_TIME”,
 “SYSTEM_TIME”,
 “VOLUNTARY_CONTEXT_SWITCHES”,
],
 ‘logstatus_file’ => {
 ‘include’ => ‘*’,
 ‘exclude’ => [
 “MODIS_W_TIME_INCORRECT”,
],
 },
 ‘pcf_file’ => [
 “700050”,
 “70060”,
 “70070”,
],
 ‘lun’ => ‘88888’,
 ‘data_type’ => ‘PGE02SUM’,
 ‘data_version’ => ‘004’,

);

10.3.10 $preselect_data_args

This parameter is OPTIONAL.

The $preselect_data_args parameter specifies the arguments that are to be passed to the
s4pm_preselect_data.pl script running in the Select Data station. This was a necessary
step to invoke the file accumulation production rule.

The %file_accumulation_parms parameter, however, makes this parameter obsolete.

If you choose to use the $preselect_data_args, the arguments to specify are the polling
interval with the -i option, the file threshold with the -thresh argument, and the timer with
the -timer argument.

For example:

$preselect_data_args = '-i 7200 - thresh 10 -timer 86400';

10.3.11 $trigger_block_args

This parameter is OPTIONAL.

The $trigger_block_args specifies the command to implement blocking in S4PM. A
block prevents new data showing up in S4PM (vi the Register Data station) from

S4PM 5.18.0 Installation and Configuration Guide: 10. The Stringmaker Algorithm
Configuration File

1/26/2007 94

triggering a new run of an algorithm for which they are associated. A block is defined
over a particular time interval such that data arriving whose times are outside of that
interval are allowed to trigger new algorithm runs, but those occurring within the interval
are quietly removed.

Once a block is defined for a particular time interval, that block is not actually created
into the first data falling within that interval arrives. This first arriving data is allowed to
trigger an algorithm run, but all subsequent ones will be blocked.

Blocks are typically used with the file accumulation production rule where the trigger
data type is the data type to be accumulated. In such a case, you only want one of the data
types within an interval to trigger a run, not all of them.

The %file_accumulation_parms hash parameter makes this parameter obsolete for this
purpose as it already handles the blocking implicitly.

10.3.12 Spatial Identifiers

This feature is OPTIONAL.

In S4PM, data files are named using the data time and the production time (see Section
6.5.1).. This leads to the question of how an algorithm might produce multiple distinct
data sets that share the same temporal coverage and therefore, the same file name. Unless
S4PM can make each file name distinct, one file will overwrite the other.

The answer to the above problem is to allow, for this unique situation, a way to modify
the file name with something unique for each such file. This is accomplished in S4PM
using the need attribute of the %outputs hash which, for output files, is normally not
used. If S4PM detects a value for need in the %outputs hash, it interprets this value as
something to include in the output file name. Thus, this normally unused attribute is co-
opted for this use.

The value specified for the need, in this situation, can be any string that will be made part
of the output file name (after the data type). A unique tag in this field must be associated
with each unique output LUN having the same data type name and version (ESDT
ShortName and VersionID in ECS). The file names referred to here are those that exist in
the S4PM file system.

The following constraints apply for spatial subsetting:

1. All spatial subsets must use the same data type name and version.
2. Each subset must use a unique PCF LUN and all possible LUNs must appear

in the PCF template. Typically, each corresponds to a unique region.
3. For now at least, the subsetted products cannot be used as input to

downstream algorithms.

S4PM 5.18.0 Installation and Configuration Guide: 10. The Stringmaker Algorithm
Configuration File

1/26/2007 95

Below is an example of how spatial subsets may be configured in an algorithm
configuration file. Here, an algorithm outputs data types MOD02SSH and MOD02SSN
which are handled in the normal way. But in addition to these data, the algorithm also
produces spatial subsets in data type MOD021SC. All MOD021SC data have the same
temporal coverage, but are uniquely identified by the 3-character values set with the need
attribute. The values in this field will become part of the file name in S4PM:

S4PM 5.18.0 Installation and Configuration Guide: 10. The Stringmaker Algorithm
Configuration File

1/26/2007 96

%outputs = (
Regular output
 'output1' => {
 'data_type' => 'MOD02SSH',
 'data_version' => '004',
 'lun' => '22222',
 'currency' => 'CURR',
 'coverage' => 300,
 },
 'output2' => {
 'data_type' => 'MOD02SSN',
 'data_version' => '004',
 'lun' => '22225',
 'currency' => 'CURR',
 'coverage' => 300,
 },
Spatial output
 'output3' => {
 'data_type' => 'MOD021SC',
 'data_version' => '004',
 'lun' => '30001',
 'currency' => 'CURR',
 'coverage' => 300,
 'need' => 'FLX',
 },
 'output4' => {
 'data_type' => 'MOD021SC',
 'data_version' => '005',
 'lun' => '30002',
 'currency' => 'CURR',
 'coverage' => 300,
 'need' => 'BAP',
 },
 'output5' => {
 'data_type' => 'MOD021SC',
 'data_version' => '005',
 'lun' => '30003',
 'currency' => 'CURR',
 'coverage' => 300,
 'need' => 'GTP',
 },
 'output6' => {
 'data_type' => 'MOD021SC',
 'data_version' => '005',
 'lun' => '30004',
 'currency' => 'CURR',
 'coverage' => 300,
 'need' => 'GTX',
 },
 'output7' => {
 'data_type' => 'MOD021SC',
 'data_version' => '005',
 'lun' => '30005',
 'currency' => 'CURR',
 'coverage' => 300,
 'need' => 'DCB',
 },
 'output8' => {

S4PM 5.18.0 Installation and Configuration Guide: 10. The Stringmaker Algorithm
Configuration File

1/26/2007 97

 'data_type' => 'MOD021SC',
 'data_version' => '005',
 'lun' => '30006',
 'currency' => 'CURR',
 'coverage' => 300,
 'need' => 'GOM',
 },
 'output9' => {
 'data_type' => 'MOD021SC',
 'data_version' => '005',
 'lun' => '30007',
 'currency' => 'CURR',
 'coverage' => 300,
 'need' => 'NOS',
 },
);

This feature can be used in any situation where multiple outputs of the same data type,
data version, and data time need to be produced with distinct file names. Although the
example showed spatial identifiers with only three characters, any length string will
work.

Note: All possible spatial identifiers have to be specified in the
algorithm configuration file even though in any one run,
there may be only a few, one, or no data produced.

S4PM 5.18.0 Installation and Configuration Guide: 10. The Stringmaker Algorithm
Configuration File

1/26/2007 98

10.3.13 Sample Stringmaker Algorithm Configuration File

$algorithm_name = ‘TestAlg’;
$algorithm_version = ‘1.0.0’;
$algorithm_exec = ‘run.csh’;
$processing_period = 300;
$pcf_path = ‘../TestAlg/1.0.0/TestAlg.pcf.tpl’;
%inputs = (
 ‘input1’ => {
 ‘data_type’ => ‘IN0’,
 ‘data_version => ‘001’,
 ‘need’ => ‘TRIG’;
 ‘lun’ => 13828,
 ‘timer’ => 0,
 ‘currency’ => ‘CURR’,
 ‘coverage’ => 300,
 ‘boundary’ => ‘START_OF_DAY’;
 },
);
%outputs = (
 ‘output1’ => {
 ‘data_type => ‘OUT0’,
 ‘data_version => ‘001’,
 ‘lun’ => 200000,
 ‘currency’ => ‘CURR’,
 ‘coverage’ => 300,
 },
);
%input_uses = (
 ‘IN0’ => 1,
);
@stats_datatypes = (‘OUT0’);
1;

Figure 10-1. A sample minimal Stringmaker algorithm configuration file. This algorithm has only
one input data type, IN0, and one output data type, OUT0.

S4PM5.18.00 Installation and Configuration Guide: 11. The Stringmaker Jobs
Configuration File

1/26/2007 99

11. The Stringmaker Jobs Configuration File

The optional Stringmaker jobs configuration file has the sole purpose of specifying the
maximum number of jobs per station per string. Unless specified in this file, the default
maximum for most stations is five.

The following is a list of all parameters in the Stringmaker Jobs configuration file:

Parameter Section Mandatory or Optional
%max_children 11.2 Optional

Table 11-1. Parameters in the Stringmaker Jobs configuration file.

11.1 File Name

The file name of the Stringmaker jobs configuration file is:

s4pm_stringmaker_jobs.cfg

11.2 %max_children

The only parameter in the s4pm_stringmaker_jobs.cfg file is a double-keyed hash,
%max_children, whose first and second keys are the string ID and station, respectively.
The hash values are the maximum number of jobs to run in that station of that string.

For example:

$max_children{'S4PM10_MO_FW'}{'run_algorithm'} = 3;
$max_children{'S4PM10_MO_FW'}{'run_algorithm71'} = 1;
$max_children{'S4PM10_MO_FW'}{'find_data'} = 5;
$max_children{'S4PM07_AI_FW'}{'find_data'} = 72;
$max_children{'S4PM07_AI_FW'}{'run_algorithm'} = 5;
$max_children{'S4PM07_MY_FW'}{'run_algorithm'} = 6;
$max_children{'S4PM07_MY_FW'}{'run_algorithm71'} = 1;

The string IDs (first hash key) must match exactly the $string_id parameter as specified
in a Stringmaker String configuration file for a string (see Section 9.2). The station
(second key) must be the name of a station as identified by its directory name. Note that
this file only needs to contain those strings and stations for which the default is not
acceptable.

The stations that typically one wants to have in this file are:

• Run Algorithm (run_algorithm)
• Find Data (find_data)

S4PM5.18.00 Installation and Configuration Guide: 11. The Stringmaker Jobs
Configuration File

1/26/2007 100

• Allocate Disk (allocate_disk)

The Modify Max Children tool available from the S4PM Monitor allows one to modify
"on-the-fly" the maximum number of jobs for a particular station within a particular
string. In fact, this tool will update the s4pm_stringmaker_jobs.cfg file to reflect those

changes (at the bottom along with a timestamp).

Note: There is one important caveat with this tool, however, in
the current release of S4PM: The Modify Max Children
tool can only modify stations and strings that are already
in the s4pm_stringmaker_jobs.cfg file. If, for example, the
'run_algorithm' station for string S4PM10_AU_FW is not
already in the Stringmaker jobs configuration file, the
Modify Max Children tool cannot set or modify it.

S4PM5.18.00 Installation and Configuration Guide: 12. The Stringmaker Derived
Configuration File

1/26/2007 101

12. The Stringmaker Derived Configuration File

The Stringmaker derived configuration file, like Stringmaker static configuration file,
should not need to be modified. Its purpose is to be the bottom feeder among all of the
other Stringmaker configuration files. Using the information specified before it on data
types and algorithms and variances, s4pm_stringmaker_derived.cfg finalizes the
configuration of the S4PM string. It does so by completing the configuration information
of stations defined earlier by static configuration file and by building other stations from
scratch.

12.1 File Name

The file name for the Stringmaker derived configuration file is:

s4pm_stringmaker_derived.cfg

Like the static configuration file, the derived configuration file is broken up into sections
for each station that gets specified. The information described in Section 8 for the
s4pm_stringmaker_static.cfg configuration file applies equally to the
s4pm_stringmaker_derived.cfg file as well.

S4PM5.18.00 Installation and Configuration Guide: 13. Working With Algorithms

1/26/2007 102

13. Working With Algorithms

This section discusses the heart of any S4PM string, the algorithms running within.

13.1 What Algorithms Can S4PM Support?

Essentially any algorithm code can be supported by S4PM. The following, however, are
some things to consider:

1. Algorithms should not assume a particular directory structure. This means that the
output file locations, input file locations, and the location from which the algorithm
is running should not be hard coded into the algorithm. An algorithm that does hard
code these items can be made to work in S4PM, but it requires extra work.

2. Algorithms should produce metadata files for the products they produce. The

metadata format is ODL or XML using the EOSDIS data model. Algorithms that
don't produce metadata will need to be wrapped by a script that carries out this
function for them.

3. An algorithm that requires command line arguments can be handled easily so long

as the arguments are static, that is, they don't change from one run to another. If this
is not the case, a wrapper script would need to be written that finds and sets the
runtime value of any dynamic arguments.

13.2 Algorithm Production Rules

S4PM supports a fairly rich set of production rules that control the inputs that each
algorithm sees at runtime. A summary of the production rules supported in S4PM is:

• Basic production of one or more products having the same temporal coverage as
the input.

• Time-shifted inputs forward or backward in time relative to the triggering input.
• Time-shifted processing period relative to the triggering input.
• Designation of both required and optional input.
• Multiple alternate inputs, both required and optional, with order or preference

specified.
• Wait timers on all inputs (except the triggering input).
• Spatial subsetting whereby all output have the same temporal coverages, but are

spatially distinct.
• Input accumulation to support daily or multi-day compositing or aggregating

algorithms.
• Proxy data types that represent more than one input data type.

S4PM5.18.00 Installation and Configuration Guide: 13. Working With Algorithms

1/26/2007 103

13.3 Production Rule Concepts

13.3.1 Simple Production Scenarios

INPUT A ⇒ Algorithm ⇒ OUTPUT C

The simplest production rule is an algorithm that reads in one data file of data type A and
outputs one data file of data type C. Such an algorithm will run every time a data file of
data type A arrives. If three such data files arrive at once, three separate runs of the
algorithm will be kicked off in S4PM. Here, we assume that the time coverage of the
output is the same as the time coverage of the input. Further, we assume each run is
completely uncorrelated. Hence, if the input data type A file is has a coverage from Oct
23, 2004 10:00:00 to Oct 23, 2004 10:05:00, the time coverage of the output C will be the
same. The above is a description of the most simple production rule.

INPUT A
 ⇒ Algorithm ⇒ OUTPUT C
INPUT B

A slightly more complex (and realistic) production rule is one that has more than one
input. For example, data types A and B are both needed to produce one output file of data
type C. In this case, a run of the algorithm will not occur until both data types A and B
arrive. We can just as easily have three or more inputs. Likewise, the number of outputs
is unrestricted. In fact, an algorithm may produce no output at all (for example, an
algorithm that updates a database with a new table row without producing any output
file).

 INPUT A (Trigger)
 ⇒ Algorithm ⇒
OUTPUT C
INPUT B (1 Step Earlier)

In the above examples, we assumed that the time coverage of the output files matched
that of the input. But this is not a requirement. In fact, S4PM can support the notion of
time-shifted inputs. An algorithm may need one or more of its inputs shifted in time
(backward or forward) relative to a data type designated as the trigger data type. For
example, if we designate input A as the trigger, an algorithm may require that input B not
have the same time coverage as A, but be the one earlier in time.

S4PM further supports optional inputs. An algorithm will not be run unless all of the
required inputs are available. If an input data type is designated as optional, the algorithm
will look for that data type, but if it cannot be found within a configurable time limit, the
algorithm will run without. There can be more than one optional input and these optional
inputs can be ordered as to what is the most desired through what is the least desired.

S4PM5.18.00 Installation and Configuration Guide: 13. Working With Algorithms

1/26/2007 104

S4PM will attempt to use the most desired optional input. If not available, it will attempt
to look for the next most-desired input, etc. If none of the optional inputs are available,
the algorithm will run without it.

You will often see the term PGE. This simply refers to the algorithm and in this context,
PGE is synonymous with algorithm. (PGE actually stood for Product Generation
Executive).

13.3.2 The Stringmaker Algorithm Configuration File

The production rules illustrated above and many others are embodied in the Select Data
configuration file. Once Select Data configuration is needed or each algorithm. In fact,
the Select Data configuration file is part of the algorithm package (discussed below).
Here, we discuss this important configuration file and how to generate it.

13.3.2.1 The Algorithm Configuration File Name

As discussed in Section 10, the algorithm configuration file must be named:

<algorithm_name>_<profile_name>.cfg

where:

<algorithm_name> is the name of the algorithm and <profile_name> is the name of the
profile for this algorithm. Any one algorithm may have multiple profiles and therefore,
multiple algorithm configuration files each with a file name distinguished by the profile
name. The most likely reason to have multiple profiles is to maintain distinct sets of
production rules.

Example valid algorithm configuration file names are:

MoPGE02_nominal.cfg
AiL2_reproc.cfg

13.3.2.2 Algorithm Configuration File Content

Section 10 has a full description of the parameters that go into an algorithm configuration
file. The format of the algorithm configuration file is the same as all Stringmaker
configuration files, namely Perl syntax.

It is always wise to verify algorithm configuration file syntax by running it through the
Perl compiler:

perl –c <algorithm>_<profile>.cfg

S4PM5.18.00 Installation and Configuration Guide: 13. Working With Algorithms

1/26/2007 105

The format of the Select Data configuration file is parameter = value. Some parameters
are mandatory while others are optional and may be used only when needed by the
algorithm.

13.3.3 Algorithm Configuration File Autopsy

In this section, we will discuss in detail an example algorithm configuration file. The file
may be seen in Appendix A. Note that the line numbers at the beginning of each line are
not part of the file, but only serve in the discussion that follows.

13.3.3.1 General Points

The algorithm configuration file is in Perl syntax. It is, in fact, a compilable Perl source
file. As such, all the syntax rules that apply to Perl apply here as well. Although this Perl
“code” is basically a list of parameter (or Perl variable) definitions, it does open up the
possibility to add complex Perl code to this file. This will not, however, be discussed
here.

Also note that typically, the order of parameters is not important. Thus, the
$algorithm_name and $algorithm_version parameters can be set at the bottom of the file
although, for the sake of maintainers, this may not be the wisest choice.

S4PM5.18.00 Installation and Configuration Guide: 13. Working With Algorithms

1/26/2007 106

13.3.3.2 Line By Line Dissection

Line Numbers Discussion
1-3 In lines 1-3, the algorithm name, version, and the name of the executable

to run are set. Note that S4PM assumes that the executable has the
correct permissions to be executed by the S4PM user.

4 The processing period is set to 300 seconds. This means that the
algorithm will be processing 300 seconds of input. Typically, this means
that the output corresponds to the same 300-second time span, although
this doesn’t have to be the case.

5-6 The $pre_processing_offset and $post_processing_offset are both set to
0. These parameters could have instead been left out of the file altogether
and have the same effect.

Because both are zero, this means that the processing period (which is
300 seconds) is aligned to the beginning of the timer period represented
in the trigger input data. In other words, the processing period is
contemporaneous with the trigger input data.

7 The $metadata_from_metfile being set to zero means that the metadata
are read from the HDF file rather than from the accompanying metadata
file. As with lines 5-6, this line could have been left out since the default
for this parameter is zero.

8 The $apply_leapsec_correction being set to zero means that no such
correction will be done; this is not an AIRS algorithm. The line could have
been left out altogether.

9 The $pcf_path is set to the relative full pathname of the Process Control
File (PCF) template for this algorithm. It will be from this template that the
runtime PCF will be generated.

The advantage of a relative path rather than an absolute one is that this
configuration file is portable to any S4PM string whereas an absolute path
may need to be changed when changing strings.

10 The $product_coverage is set to 300 seconds. This means that all
products from this algorithm are assumed to be 300 seconds long.

14 Since $make_ph is set to non-zero (1 in this case), a Production History
(PH) tar file will be generated when this algorithm completes successfully.

Whether or not the PH get exported is dependent upon the $export_ph
parameter in the Stringmaker string configuration file.

If PH files are not exported, they will remain on disk in the PH disk pool
until they are deleted by a job running in the Repeat Daily station after
four days (4 is hardwired in the Stringmaker derived configuration file).

16 Since $run_easy is set to zero, the Run Easy algorithm wrapper will not
be invoked.

18-59 Lines 18-59 are where the input files for this algorithm are described.
19-28 This section describes the data type MOD03, version 005. Note that since

the need is set to ‘TRIG’, this data type is designated the trigger data
type. Thus, it is the arrival of a file of MOD03 version 005 that triggers
S4PM into action by setting up a job to determine what other data are
needed by a run using this file as input and then to begin looking for those
data.

The coverage attribute is 300 seconds, equal to the processing period set

S4PM5.18.00 Installation and Configuration Guide: 13. Working With Algorithms

1/26/2007 107

Line Numbers Discussion
earlier. The boundary is set to START_OF_DAY. S4PM will thus assume,
when determining what other data are needed for this algorithm, that
MOD03 aligned to the beginning of the data. Since MOD03 are only 300
seconds long, a boundary of START_OF_HOUR would have achieved
equal results.

29-38 This section describes MOD01 version 005. Since the need is set to
‘REQ’, we know that this input is required. S4PM will not allow this job to
run unless this data is available.

We also note that the currency is set to ‘CURR’. This means that the
MOD01 is aligned exactly with the MOD03; what is “current” is dictated by
the trigger input.

39-58 These sections describe two optional inputs. They are both MOD01,
version 005. The distinction between these MOD01 files and the one
described in lines 29-38 is that (1) they are for the previous and following
files, and (2) both are optional.

The currency setting of ‘PREV1’ means that the MOD01 is previous by
one step to the current and “current” is defined by the time of the trigger
input. So for example, if the trigger MOD03 was for 10:00-10:05, a
‘PREV1’ means times 09:55-10:00.

If the need had been set to ‘PREV2’, it would have meant times 09:50-
09:55, ‘PREV3’ would have meant 09:45-09:50, etc.

Likewise, the second MOD01 has a currency of ‘FOLL1’ meaning a
MOD01 from the time period immediately after the current. If current was
10:00-10:05, then ‘FOLL1’ means 10:05-10:10.

Since the need attribute for both files is set to ‘OPT1’, we know these files
are optional. Use them if they are available. How long does S4PM wait
before processing without them? That is set by the timer attribute which
we see is 7200 seconds for both. S4PM will wait for up to two hours for
these optional inputs to arrive before giving up on them and running the
algorithm without.

Note that each of these two inputs has a different LUN (see the lun
attribute). It is only because of this that we can ascribe different rules for
each such as the currency.

61-85 These lines describe the outputs from this algorithm. Note that all possible
outputs need to be listed here even if they are not always produced.

113-125 In these lines the input and output uses are set. All input and output data
types need to be listed in these hashes.

To determine the number of input uses for each data type, you need to
ask ‘What is the maximum number of times a data file of this data type will
be accessed (read) by this algorithm?’

NOTE: You are not asking how many times a single run of this algorithm
will access the data (since the answer to this is almost always one), but
how many times will runs of this algorithm access the data.

For example, for a two-hour input file, you may have an algorithm that
processes only 15 minutes of it at a time. Thus, to process the entire tow-
hour file, the algorithm will have to run 8 times. Thus, the number of uses

S4PM5.18.00 Installation and Configuration Guide: 13. Working With Algorithms

1/26/2007 108

Line Numbers Discussion
for this input is 8 since data needs to be read by runs of this algorithm 8
times before it has “used” it up.

Do not concern yourself with what other algorithms may read or access
the same input. S4PM will tally the total number of uses on any data type
for you automatically.

For outputs, the number of uses is almost always one (the export of a
data file is considered a use of it).

127-130 In these lines, the @stats_datatypes and $stats_index_datatype
parameters are set. In the former, you might notice that not all output data
types are listed, namely the MOD021QA. This is because this QA output
is not considered “important” and therefore, no performance statistics
need be generated on it.

The $stats_index_datatype is set to MOD021KM. This is because only
the MOD021KM happens to be made in all runs. It turns out that the
MOD02HKM and MOD02QKM are not always produced. So, they would
have been a poor choice for the index data type.

Table 13-1. A line-by-line discussion of the algorithm configuration file shown in Appendix A.

13.4 Process Control Files

This section discusses Process Control Files or PCFs. These files are part of the algorithm
package and have been mentioned earlier.

13.4.1 The Process Control File

S4PM generates a runtime Process Control File (PCF) for each run of every algorithm.
The PCF is an ASCII text file that maps physical files and directories to logical unit
numbers (LUNs). S4PM assigns input and output file names and directories for each run
of an algorithm. The only way to have an algorithm access these dynamically generated
names in a consistent way is to via the PCF. With a PCF, the algorithm accesses the LUN
and uses that LUN to determine the current value of the file name and directory location.
In addition to mapping files to LUNs, the PCF can also map parameters to LUNs. In the
ECS world, these so-called user-defined parameters can be used to pass various values
(numeric, character, etc.) to the running algorithm; they function very much like
command line arguments.

The PCF format is based on that used with the ECS Toolkit, but simplified greatly.

For algorithms that do not use the ECS Toolkit (and the API for handling PCFs), S4PM
provides tools to shield the algorithm from having to deal with them. Bear in mind,
however, that PCFs are still used in the background by S4PM.

S4PM5.18.00 Installation and Configuration Guide: 13. Working With Algorithms

1/26/2007 109

13.4.2 The Process Control File Template

As mentioned above, S4PM generates a new PCF for each algorithm run. What changes
in the runtime PCF from run to run are the specific file names. In addition, because some
input files may be optional, PCFs may also differ from run to run as far as what files they
contain. For example, in one run, optional data may be left out because it did not arrive
soon enough.

The PCF template is the template that S4PM uses to generate dynamic runtime PCFs.
The PCF template is part of the algorithm package. Since S4PM uses the PCF template to
generate a runtime PCF, the PCF template needs to contain all possible input files and all
possible output files, both optional and required. In any one algorithm run, only those
optional inputs actually found will end up in the runtime PCF. If an algorithm has no
optional inputs or outputs, then the PCF template will look like the runtime PCF.

The file name for a PCF template in the algorithm package is unrestricted. The algorithm
configuration file $pcf_path must be set to the relative or absolute pathname of the PCF
template (see Section 10.2.8).

Appendix B contains an example PCF template corresponding to the algorithm
configuration file in Appendix A.

Several points can be illustrated by the PCF template in Appendix B:

1. All sections of the PCF must be present, even if they contain no entries. These
required sections are:

a. PRODUCT INPUT FILES
b. PRODUCT OUTPUT FILES
c. SUPPORT INPUT FILES
d. SUPPORT OUTPUT FILES
e. USER DEFINED RUNTIME PARAMETERS
f. INTERMEDIATE INPUT
g. INTERMEDIATE OUTPUT
h. TEMPORARY I/O
i. END

2. Syntax must be followed. Section names must be in all uppercase and lines
containing section names must begin with a ? character in the first column. See
lines 2, 29, 39, 42, 48, 70, 73, and 76.

3. Section names must then be followed by a line with a ! in the first column
(comment lines may be inserted in between) followed by a default directory
name. In S4PM, the output directory must be set to ./ meaning the current
directory. See lines 30, 43, and 77.

4. There can be NO blank lines in a PCF or PCF template. A line must either be a
PCF entry or a comment line beginning with the # character (even if there is no
comment afterward). See lines 1, 25, and 28 for example.

S4PM5.18.00 Installation and Configuration Guide: 13. Working With Algorithms

1/26/2007 110

5. For static input files (e.g. lookup tables), the PCF entry in the template must be
the actual file name and directory. Directories should be relative as shown in lines
5 through 7. Remember that static files are not seen by S4PM.

6. For dynamic input, the only important part of the entry is the LUN. The file name
that you place in the PCF (and there needs to be something there) is arbitrary and
only serves the human reader of the document. See lines 9 through 13.

7. Metadata configuration files (MCFs), if your algorithm uses them, are like static
input files. The file names and directory locations need to be real. See lines 18
through 23.

8. Static parameters that need to be passed to the algorithm can be set in the USER
DEFINED RUNTIME PARAMETERS section as in lines 49 through 68.
Remember though, these are static. They will not change from one run to the next.
(The Modify PCF Parameters Tool does allow operators to change these
parameters, but it is not meant to be applied on a run-by-run basis.)

9. The last line must be END. See line 79.
10. There is special treatment needed for multi-file granule output, that is, where

each granule is made up of more than one data file (typically Level 0 data). For
most cases, S4PM will supply as many versions of an output LUN in the runtime
PCF as are required by the processing period of the algorithm. For example, if the
processing period is 15 minutes and the output is only five minutes each, S4PM
will automatically provide three entries in the runtime PCF for the output, all with
the same LUN but different version numbers (the last field in a PCF entry). For
multi-file granule output, however, the PCF template needs to explicitly include
as many versions of a LUN as are needed for each file making up the granule.

For more information on PCF syntax, refer to the ECS Toolkit User’s Guide.

13.5 Multi-File Granule Output

S4PM has full support for multi-file granules. Algorithms may have multi-file granules as
inputs and may produce multi-file granule outputs. Chaining of such algorithms is now
possible.

13.5.1 What are multi-file granules?

First, let’s define a granule. The term granule has its heritage in ECS where a granule was
defined as the smallest managed atom of data. Typically, a granule equates to a physical
file. But due to 2 GB limits imposed on the size of files under many operating systems
(more so in the past than now), single data sets exceeding 2 GB had to be split across
multiple physical files yet still be managed in ECS as a single entity. Thus, the term
granule was born for this purpose.

The support for multi-file granules (as opposed to the trivial case of single file granules)
was extended to the ECS Toolkit and to the PCF used by algorithms running in ECS. The

S4PM5.18.00 Installation and Configuration Guide: 13. Working With Algorithms

1/26/2007 111

PCF implemented the notion of multi-file granules by allowing a single LUN to be
represented in the PCF via multiple entries, one for each physical file of the granule.
These entries were distinguished by a version identifier in the last field of the PCF entry
(as well as the file name). For regular, single file granules, this version defaults to 1. For
multi-file granules, the first PCF entry has the version set to the maximum number of
files and then each subsequent entry sets the version to the version of the previous entry
minus 1. Thus, for a granule of three files, the first entry in the PCF would have the
version set to 3 in the last field, the next to 2, and the last one to 1.

In ECS, multi-file granules were typically Level 0 files whose large sizes demanded that
the granule be split up into multiple files.

13.5.2 Multi-File Granule Support in S4PM

S4PM early on incorporated multi-file granule support for input files only. There was no
expressed need for supporting them as output. In S4PM, a multi-file granule is supported
by replacing what would be a simple data file name in one of the data disk pools with a
directory instead within which the individual files making up the granule reside. Thus, a
unique directory is used as a “container” for the files in the granule. The directory name
itself adheres to the S4PM file name convention for all data files within S4PM.

13.5.3 Full Multi-File Granule Support

As of 5.17.0, full multi-file granule support for both input and output is supported in
S4PM. Thus, the multi-file granule output of one algorithm may now be used as the
multi-file granule input to another.

To configure an algorithm for multi-file granule output, the PCF template needs to list
multiple entries for the same LUN, as many as are needed to support all the files in the
granule. Each one needs to have a unique version number in the last field counting
backwards as discussed above.

If the PCF template contains only a single entry for a LUN, S4PM assumes that the
outputs are single file granules. If it sees multiple entries in the PCF for the same LUN,
S4PM assumes that it is dealing with a multi-file granule.

13.5.4 A Caveat

Note that S4PM by default will automatically added multiple entries for a single output
LUN in order to completely cover the processing period of the algorithm. For example, if
the processing period is 15 minutes and S4PM knows that the output data is only five
minutes each, it will automatically supply three entries in the runtime PCF for the single

S4PM5.18.00 Installation and Configuration Guide: 13. Working With Algorithms

1/26/2007 112

LUN in order to provide full output data coverage. Thus, the expansion of a single LUN
into multiple entries (each with a different version number) could mean a single multi-file
granule or multiple single file granules! The only way S4PM can tell the difference is by
how the PCF template is constructed. If a single entry is listed for a LUN, the assumption
is that there is at least one single file granule (or more if the processing period is longer
than the product coverage). If, however, multiple entries for a single LUN are explicitly
listed in the PCF template, S4PM assumes it is dealing with a single multi-file granule
instead.

S4PM cannot support multiple multi-file granules in the same LUN. If this attempt is
detected, S4PM will fail in the Prepare Run station.

13.6 Preparing an Algorithm Package for S4PM

An algorithm package in S4PM consists of the following components:

S4PM5.18.00 Installation and Configuration Guide: 13. Working With Algorithms

1/26/2007 113

Component Description Required?

Executable binaries
and scripts

Algorithm code can be any combination of compiled or
script binaries. Permissions must be properly set so that
they can be executed on the host machine by the S4PM
user.

One binary (compiled or script) must be designated as
the main program. It will be this program that S4PM will
execute. The main program may then execute other
compiled or script binaries as needed. The main
program, however, must assume that these other
binaries are in the current working directory.

Required

Algorithm
Configuration File

There must be at lest one algorithm configuration file as
described in Section 10.

Required

PCF Template There must be exactly one Process Control File
template.

Required

Static Input Files Static inputs (lookup tables, flat file databases, etc.) are
packaged with the algorithm. Static input are not
described by the algorithm configuration file, but their
locations must be hardwired in the PCF template. Unlike
with dynamic input, static input files are not “seen” by
S4PM.

It may be convenient to place static input in a
subdirectory (say, named ‘static’).

Optional

Metadata
Configuration Files

Metadata configuration files or MCFs are needed by
algorithms that use the ECS Toolkit. If included, the
location of MCFs needs to be hardwired in the PCF
template (as with other static input).

Optional

Other Files Algorithm packages may include any other files to
support policies at your site. For example, README
files, output from software builds, or other
documentation.

Optional

Table 13-2. Required and optional components of the algorithm package in S4PM.

Typically, the components comprising an algorithm package are placed into one or more
tar or zip files.

13.7 Installing Algorithm Packages

Algorithm package installation into S4PM is a two-step process. The first step is to
simply install the algorithm package into the disk location where S4PM is configured to
look. The second step is to configure S4PM to incorporate the algorithm into its
processing.

13.7.1 Installation

Algorithm packages must be installed under the algorithm root directory defined by the
$algorithm_root parameter in the Stringmaker string configuration file as described in

S4PM5.18.00 Installation and Configuration Guide: 13. Working With Algorithms

1/26/2007 114

Section 9.7 or in the default location: $s4pm_root/$data_source/pge where $s4pm_root
and $data_source are parameters also set in the Stringmaker string configuration file.

Below the algorithm root directory, S4PM assumes there is a subdirectory for each
algorithm with the name of the algorithm (matching the $algorithm_name parameter in
the algorithm configuration file). Then below this directory, S4PM assumes that there is a
subdirectory named for the algorithm version (matching the $algorithm_version
parameter in the algorithm configuration file).

For example, algorithm AiL1A_AIRS, version 2.3.4 is assumed to reside in:

$algorithm_root/AiL1A_AIRS/2.3.4/

13.7.2 Configuring S4PM For An Algorithm

See Section 4.3.10 for how to run Stringmaker.

Note: S4PM does not “see” an algorithm until it has been
configured to do so. Therefore, you can safely install
(place on disk) any number of algorithms or algorithm
versions without affecting current processing.

S4PM 5.18.0 Installation and Configuration Guide: Appendix A

1/26/2007 115

Appendix A. Sample Stringmaker Algorithm
Configuration File

The following lines form an example Stringmaker algorithm configuration file, in this
case, for MoPGE02. Note that the line numbers shown in the first column are not part of
the configuration file, but are used only to discuss this file in Section 13.

 1 $algorithm_name = 'MoPGE02';
 2 $algorithm_version = '5.0.6';
 3 $algorithm_exec = 'PGE02.csh';
 4 $processing_period = 300;
 5 $pre_processing_offset = 0;
 6 $post_processing_offset = 0;
 7 $metadata_from_metfile = 0;
 8 $apply_leapsec_correction = 0;
 9 $pcf_path = '../MoPGE02/5.0.6/GDAAC.PGE02.pcf.tpl';
 10 $product_coverage = 300;
 11
 12
 13 # CHANGE THE SETTING BELOW IF YOU WANT PH FILES MADE
 14 $make_ph = 1;
 15
 16 $run_easy = 0;
 17
 18 %inputs = (
 19 'input1' => {
 20 'data_type' => 'MOD03',
 21 'data_version' => '005',
 22 'need' => 'TRIG',
 23 'lun' => '600000',
 24 'timer' => 7200,
 25 'currency' => 'CURR',
 26 'coverage' => 300,
 27 'boundary' => 'START_OF_DAY',
 28 },
 29 'input2' => {
 30 'data_type' => 'MOD01',
 31 'data_version' => '005',
 32 'need' => 'REQ',
 33 'lun' => '500000',
 34 'timer' => 7200,
 35 'currency' => 'CURR',
 36 'coverage' => 300,
 37 'boundary' => 'START_OF_DAY',
 38 },
 39 'input3' => {
 40 'data_type' => 'MOD01',
 41 'data_version' => '005',
 42 'need' => 'OPT1',
 43 'lun' => '500001',
 44 'timer' => 7200,
 45 'currency' => 'PREV1',
 46 'coverage' => 300,

S4PM 5.18.0 Installation and Configuration Guide: Appendix A

1/26/2007 116

 47 'boundary' => 'START_OF_DAY',
 48 },
 49 'input4' => {
 50 'data_type' => 'MOD01',
 51 'data_version' => '005',
 52 'need' => 'OPT1',
 53 'lun' => '500002',
 54 'timer' => 7200,
 55 'currency' => 'FOLL1',
 56 'coverage' => 300,
 57 'boundary' => 'START_OF_DAY',
 58 },
 59);
 60
 61 %outputs = (
 62 'output1' => {
 63 'data_type' => 'MOD021KM',
 64 'data_version' => '005',
 65 'lun' => '700002',
 66 'currency' => 'CURR',
 67 'coverage' => 300,
 68 'boundary' => 'START_OF_DAY',
 69 },
 70 'output2' => {
 71 'data_type' => 'MOD02QKM',
 72 'data_version' => '005',
 73 'lun' => '700000',
 74 'currency' => 'CURR',
 75 'coverage' => 300,
 76 'boundary' => 'START_OF_DAY',
 77 },
 78 'output3' => {
 79 'data_type' => 'MOD02OBC',
 80 'data_version' => '005',
 81 'lun' => '700010',
 82 'currency' => 'CURR',
 83 'coverage' => 300,
 84 'boundary' => 'START_OF_DAY',
 85 },
 86
 87 'output4' => {
 88 'data_type' => 'MOD021QA',
 89 'data_version' => '005',
 90 'lun' => '700100',
 91 'currency' => 'CURR',
 92 'coverage' => 300,
 93 'boundary' => 'START_OF_DAY',
 94 },
 95 'output5' => {
 96 'data_type' => 'MOD02HKM',
 97 'data_version' => '005',
 98 'lun' => '700001',
 99 'currency' => 'CURR',
100 'coverage' => 300,
101 'boundary' => 'START_OF_DAY',
102 },
103 'output6' => {
104 'data_type' => 'Browse',

S4PM 5.18.0 Installation and Configuration Guide: Appendix A

1/26/2007 117

105 'data_version' => '001',
106 'lun' => '99201',
107 'currency' => 'CURR',
108 'coverage' => 300,
109 'boundary' => 'START_OF_DAY',
110 },
111);
112
113 %input_uses = (
114 'MOD01' => 3,
115 'MOD03' => 1,
116);
117
118 %output_uses = (
119 'MOD02HKM' => 1,
120 'MOD02QKM' => 1,
121 'MOD021KM' => 1,
122 'Browse' => 1,
123 'MOD021QA' => 1,
124 'MOD02OBC' => 1,
125);
126
127 @stats_datatypes = ('MOD021KM','MOD02QKM',
128 'MOD02OBC', 'MOD02HKM', 'Browse',);
129
130 $stats_index_datatype = 'MOD021KM';
131
132 1;

S4PM 5.18.0 Installation and Configuration Guide: Appendix A

1/26/2007 118

Appendix B. Sample Process Control File

The following is the Process Control File for the same algorithm described in the
algorithm configuration file of Appendix A. Note that the line numbers shown in the first
column are not part of the configuration file, but are used only to discuss this file in
Section 13.

 1 #
 2 ? PRODUCT INPUT FILES
 3 ! ~/runtime
 4 # Static Input Lookup Tables
 5
700050|MOD02_Reflective_LUTs.hdf|../MoPGE02/5.0.6/pge/static||||1
 6 700060|MOD02_Emissive_LUTs.hdf|../MoPGE02/5.0.6/pge/static||||1
 7 700070|MOD02_QA_LUTs.hdf|../MoPGE02/5.0.6/pge/static||||1
 8 # Geolocation
 9 600000|MOD03.A2003186.0125.004.2003186082217.hdf|||||1
 10 # L1A input files below (Also see 70020,700223,700222,201001)
 11 500000|MOD01.A2003186.0120.004.2003186081241.hdf|||||1
 12 500001|MOD01.A2003186.0125.004.2003186081527.hdf|||||1
 13 500002|MOD01.A2003186.0130.004.2003186081714.hdf|||||1
 14 #--

 15 10252|GetAttr.temp|./||||1
 16 10254|MCFWrite.temp|./||||1
 17 # MCFs
 18 700250|MOD02QKM#005.MCF|../MoPGE02/5.0.6/pge/static||||1
 19 700251|MOD02HKM#005.MCF|../MoPGE02/5.0.6/pge/static||||1
 20 700252|MOD021KM#005.MCF|../MoPGE02/5.0.6/pge/static||||1
 21 700253|MOD02OBC#005.MCF|../MoPGE02/5.0.6/pge/static||||1
 22 700350|MOD021QA#005.MCF|../MoPGE02/5.0.6/pge/static||||1
 23 10250|Browse#001.MCF|../MoPGE02/5.0.6/pge/static||||1
 24 # ---

 25 #
 26 10501|INSERT_EPHEMERIS_FILES_HERE|||||1
 27 10502|INSERT_ATTITUDE_FILES_HERE|||||1
 28 #
 29 ? PRODUCT OUTPUT FILES
 30 ! ./
 31 700000|MOD02QKM.hdf|||||1
 32 700001|MOD02HKM.hdf|||||1
 33 700002|MOD021KM.hdf|||||1
 34 700010|MOD02OBC.hdf|||||1
 35 700100|MOD021QA.hdf|||||1
 36 # MOD_PR02BR (Browse) Output File:
 37 99201|Browse.Terra.Af5.3_6||| ||1
 38 #
 39 ? SUPPORT INPUT FILES
 40 ! ~/runtime
 41 #
 42 ? SUPPORT OUTPUT FILES
 43 ! ./
 44 10100|LogStatus|||||1
 45 10101|LogReport|||||1

S4PM 5.18.0 Installation and Configuration Guide: Appendix A

1/26/2007 119

 46 10102|LogUser|||||1
 47 #
 48 ? USER DEFINED RUNTIME PARAMETERS
 49 700200|ECS METADATA|700100:1
 50 700201|ECS METADATA|700101:1
51 700202|ECS METADATA:700101:1
 52 800500|PGE02 Version|5.0.6
 53 800550|Processing Environment|IRIX64
 54 800510|Satellite; AM1M=Terra, PM1M=Aqua|AM1M
 55 800600|ReprocessingPlanned|further update is anticipated
 56 800605|ReprocessingActual|processed once
 57 800610|MCSTLUTVersion|5.0.6.4_Terra
 58 800615|Write_Night_Mode_HiRes_Data|0
 59 800620|ProcessingCenter|GSFC
 60 # MOD_PR02BR (Browse) parameters:
 61 # Number of Input bands
 62 99401|band1|1
 63 99402|band2|4
 64 99403|band3|3
 65 99406|browse_product_shutdown|0
 66 # ShortName & VersionID are used in MCF
 67 99505|SHORTNAME|"DFLAXDUMMY"
 68 99506|VERSIONID|"V01"
 69 #
 70 ? INTERMEDIATE INPUT
 71 ! ~/runtime
 72 #
 73 ? INTERMEDIATE OUTPUT
 74 ~/runtime
 75 #
 76 ? TEMPORARY I/O
 77 ! ./
 78 #
 79 ? END

